Tuning language models for dialogue generation has been a prevalent paradigm for building capable dialogue agents. Yet, traditional tuning narrowly views dialogue generation as resembling other language generation tasks, ignoring the role disparities between two speakers and the multi-round interactive process that dialogues ought to be. Such a manner often leads to unsatisfactory chat consistency for the built agent. In this work, we emphasize the interactive, communicative nature of dialogue and argue that it is more feasible to model the speaker roles of agent and user separately, enabling the agent to adhere to its role consistently. With this in mind, we propose an efficient Multi-round Interactive Dialogue Tuning (Midi-Tuning) framework. It models the agent and user individually with two adapters built upon large language models. The adapters make use of respective utterances round by round in alternating order and they are tuned via a round-level memory caching mechanism. Extensive experiments demonstrate that, our framework performs superior to traditional fine-tuning and harbors the tremendous potential for improving dialogue consistency.
Fine-tuning and in-context learning (ICL) are two prevalent methods in imbuing large language models with task-specific knowledge. It is commonly believed that fine-tuning can surpass ICL given sufficient training samples as it allows the model to adjust its internal parameters based on the data. However, this paper presents a counterintuitive finding: For tasks with implicit patterns, ICL captures these patterns significantly better than fine-tuning. We developed several datasets featuring implicit patterns, such as sequences determining answers through parity or identifying reducible terms in calculations. We then evaluated the models’ understanding of these patterns under both fine-tuning and ICL across models ranging from 0.5B to 7B parameters. The results indicate that models employing ICL can quickly grasp deep patterns and significantly improve accuracy. In contrast, fine-tuning, despite utilizing thousands of times more training samples than ICL, achieved only limited improvements. We also proposed circuit shift theory from a mechanistic interpretability’s view to explain why ICL wins.
Language models are exhibiting increasing capability in knowledge utilization and reasoning. However, when applied as agents in embodied environments, they often suffer from misalignment between their intrinsic knowledge and environmental knowledge, leading to infeasible actions. Traditional environment alignment methods, such as supervised learning on expert trajectories and reinforcement learning, encounter limitations in covering environmental knowledge and achieving efficient convergence, respectively. Inspired by human learning, we propose Exploration-based Error Correction Learning (E2CL), a novel framework that leverages exploration-induced errors and environmental feedback to enhance environment alignment for embodied agents. E2CL incorporates teacher-guided and teacher-free explorations to gather environmental feedback and correct erroneous actions. The agent learns to provide feedback and self-correct, thereby enhancing its adaptability to target environments. Extensive experiments in the VirtualHome environment demonstrate that E2CL-trained agents outperform those trained by baseline methods and exhibit superior self-correction capabilities.
Language model detoxification aims to minimize the risk of generating offensive or harmful content in pretrained language models (PLMs) for safer deployment. Existing methods can be roughly categorized as finetuning-based and decoding-based. However, the former is often resource-intensive, while the latter relies on additional components and potentially compromises the generation fluency. In this paper, we propose a more lightweight approach that enables the PLM itself to achieve “self-detoxification”. Our method is built upon the observation that prepending a negative steering prompt can effectively induce PLMs to generate toxic content. At the same time, we are inspired by the recent research in the interpretability field, which formulates the evolving contextualized representations within the PLM as an information stream facilitated by the attention layers. Drawing on this idea, we devise a method to identify the toxification direction from the normal generation process to the one prompted with the negative prefix, and then steer the generation to the reversed direction by manipulating the information movement within the attention layers. Experimental results show that our approach, without any fine-tuning or extra components, can achieve comparable performance with state-of-the-art methods.