Chao Gao
2024
DLoRA: Distributed Parameter-Efficient Fine-Tuning Solution for Large Language Model
Chao Gao
|
Sai Qian Zhang
Findings of the Association for Computational Linguistics: EMNLP 2024
To enhance the performance of large language models (LLM) on downstream tasks, one solution is to fine-tune certain LLM parameters and make them better align with the characteristics of the training dataset. This process is commonly known as parameter-efficient fine-tuning (PEFT). Due to the scale of LLM, PEFT operations are usually executed in the public environment (e.g., cloud server). This necessitates sharing sensitive user data across public environments, thereby raising potential privacy concerns. To tackle these challenges, we propose a distributed PEFT framework called DLoRA. DLoRA enables scalable PEFT operations to be performed collaboratively between the cloud and user devices. Coupled with the proposed Kill and Revive algorithm, the evaluation results demonstrate that DLoRA can significantly reduce the computation and communication workload over user devices while achieving superior accuracy and privacy protection.
Modeling Bilingual Sentence Processing: Evaluating RNN and Transformer Architectures for Cross-Language Structural Priming
Demi Zhang
|
Bushi Xiao
|
Chao Gao
|
Sangpil Youm
|
Bonnie J Dorr
Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)
This study evaluates the performance of Recurrent Neural Network (RNN) and Transformer models in replicating cross-language structural priming, a key indicator of abstract grammatical representations in human language processing. Focusing on Chinese-English priming, which involves two typologically distinct languages, we examine how these models handle the robust phenomenon of structural priming, where exposure to a particular sentence structure increases the likelihood of selecting a similar structure subsequently. Our findings indicate that transformers outperform RNNs in generating primed sentence structures, with accuracy rates that exceed 25.84% to 33. 33%. This challenges the conventional belief that human sentence processing primarily involves recurrent and immediate processing and suggests a role for cue-based retrieval mechanisms. This work contributes to our understanding of how computational models may reflect human cognitive processes across diverse language families.