2024
pdf
bib
abs
MIBench: Evaluating Multimodal Large Language Models over Multiple Images
Haowei Liu
|
Xi Zhang
|
Haiyang Xu
|
Yaya Shi
|
Chaoya Jiang
|
Ming Yan
|
Ji Zhang
|
Fei Huang
|
Chunfeng Yuan
|
Bing Li
|
Weiming Hu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Built on the power of LLMs, numerous multimodal large language models (MLLMs) have recently achieved remarkable performance on various vision-language tasks. However, most existing MLLMs and benchmarks primarily focus on single-image input scenarios, leaving the performance of MLLMs when handling realistic multiple images underexplored. Although a few benchmarks consider multiple images, their evaluation dimensions and samples are very limited. In this paper, we propose a new benchmark MIBench, to comprehensively evaluate fine-grained abilities of MLLMs in multi-image scenarios. Specifically, MIBench categorizes the multi-image abilities into three scenarios: multi-image instruction (MII), multimodal knowledge-seeking (MKS) and multimodal in-context learning (MIC), and constructs 13 tasks with a total of 13K annotated samples. During data construction, for MII and MKS, we extract correct options from manual annotations and create challenging distractors to obtain multiple-choice questions. For MIC, to enable an in-depth evaluation, we set four sub-tasks and transform the original datasets into in-context learning formats. We evaluate several open-source and closed-source MLLMs on the proposed MIBench. The results reveal that although current models excel in single-image tasks, they exhibit significant shortcomings when faced with multi-image inputs, such as limited fine-grained perception, multi-image reasoning and in-context learning abilities. The annotated data of MIBench is available at https://huggingface.co/datasets/StarBottle/MIBench.
pdf
bib
abs
Enhancing In-Context Learning via Implicit Demonstration Augmentation
Xiaoling Zhou
|
Wei Ye
|
Yidong Wang
|
Chaoya Jiang
|
Zhemg Lee
|
Rui Xie
|
Shikun Zhang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The emergence of in-context learning (ICL) enables large pre-trained language models (PLMs) to make predictions for unseen inputs without updating parameters. Despite its potential, ICL’s effectiveness heavily relies on the quality, quantity, and permutation of demonstrations, commonly leading to suboptimal and unstable performance. In this paper, we tackle this challenge for the first time from the perspective of demonstration augmentation. Specifically, we start with enriching representations of demonstrations by leveraging their deep feature distribution. We then theoretically reveal that when the number of augmented copies approaches infinity, the augmentation is approximately equal to a novel logit calibration mechanism integrated with specific statistical properties. This insight results in a simple yet highly efficient method that significantly improves the average and worst-case accuracy across diverse PLMs and tasks. Moreover, our method effectively reduces performance variance among varying demonstrations, permutations, and templates, and displays the capability to address imbalanced class distributions.
2023
pdf
bib
abs
Vision Language Pre-training by Contrastive Learning with Cross-Modal Similarity Regulation
Chaoya Jiang
|
Wei Ye
|
Haiyang Xu
|
Songfang Huang
|
Fei Huang
|
Shikun Zhang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
In this paper, we reconsider the problem of (partial) false negative samples from the Mutual Information (MI) Maximization perspective, the traditional contrastive loss (like InfoNCE loss) will equally push away the anchor of all positive samples and negative samples regardless of their possible semantic similarities. We theoretically show that InfoNCE loss will not only maximize the MI between the anchor and positive samples but minimize the MI between the anchor and false negative samples even though they share similar semantic which could provide a possible theoretical explanation for the observation of the existence of false negative samples in the cross-modal contrastive learning will decrease the downstream task performance of VLP models. Above analysis motivate us to propose the VLP model with a novel Semantic Awared Contrastive Learning framework named SACL where different negative samples are assigned with different contrastive weights according to the semantic similarity between them and the anchor.
pdf
bib
abs
Exploiting Pseudo Image Captions for Multimodal Summarization
Chaoya Jiang
|
Rui Xie
|
Wei Ye
|
Jinan Sun
|
Shikun Zhang
Findings of the Association for Computational Linguistics: ACL 2023
Multimodal summarization with multimodal output (MSMO) faces a challenging semantic gap between visual and textual modalities due to the lack of reference images for training. Our pilot investigation indicates that image captions, which naturally connect texts and images, can significantly benefit MSMO. However, exposure of image captions during training is inconsistent with MSMO’s task settings, where prior cross-modal alignment information is excluded to guarantee the generalization of cross-modal semantic modeling. To this end, we propose a novel coarse-to-fine image-text alignment mechanism to identify the most relevant sentence of each image in a document, resembling the role of image captions in capturing visual knowledge and bridging the cross-modal semantic gap. Equipped with this alignment mechanism, our method easily yet impressively sets up state-of-the-art performances on all intermodality and intramodality metrics (e.g., more than 10% relative improvement on image recommendation precision). Further experiments reveal the correlation between image captions and text summaries, and prove that the pseudo image captions we generated are even better than the original ones in terms of promoting multimodal summarization.
2022
pdf
bib
abs
TRIPS: Efficient Vision-and-Language Pre-training with Text-Relevant Image Patch Selection
Chaoya Jiang
|
Haiyang Xu
|
Chenliang Li
|
Ming Yan
|
Wei Ye
|
Shikun Zhang
|
Bin Bi
|
Songfang Huang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Vision Transformers (ViTs) have been widely used in large-scale Vision and Language Pre-training (VLP) models. Though previous VLP works have proved the effectiveness of ViTs, they still suffer from computational efficiency brought by the long visual sequence. To tackle this problem, in this paper, we propose an efficient vision-and-language pre-training model with Text-Relevant Image Patch Selection, namely TRIPS, which reduces the visual sequence progressively with a text-guided patch-selection layer in the visual backbone for efficient training and inference. The patch-selection layer can dynamically compute text-dependent visual attention to identify the attentive image tokens with text guidance and fuse inattentive ones in an end-to-end manner. Meanwhile, TRIPS does not introduce extra parameters to ViTs. Experimental results on a variety of popular benchmark datasets demonstrate that TRIPS gain a speedup of 40% over previous similar VLP models, yet with competitive or better downstream task performance.