Chengyuan Liu


2024

pdf bib
Gold Panning in Vocabulary: An Adaptive Method for Vocabulary Expansion of Domain-Specific LLMs
Chengyuan Liu | Shihang Wang | Lizhi Qing | Kun Kuang | Yangyang Kang | Changlong Sun | Fei Wu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

While Large Language Models (LLMs) demonstrate impressive generation abilities, they frequently struggle when it comes to specialized domains due to their limited domain-specific knowledge. Studies on domain-specific LLMs resort to expanding the vocabulary before fine-tuning on domain-specific corpus, aiming to decrease the sequence length and enhance efficiency during decoding, without thoroughly investigating the results of vocabulary expansion to LLMs over different domains. Our pilot study reveals that expansion with only a subset of the entire vocabulary may lead to superior performance. Guided by the discovery, this paper explores how to identify a vocabulary subset to achieve the optimal results. We introduce VEGAD, an adaptive method that automatically identifies valuable words from a given domain vocabulary. Our method has been validated through experiments on three Chinese datasets, demonstrating its effectiveness. Additionally, we have undertaken comprehensive analyses of the method. The selection of a optimal subset for expansion has shown to enhance performance on both domain-specific tasks and general tasks, showcasing the potential of VEGAD.

pdf bib
More Than Catastrophic Forgetting: Integrating General Capabilities For Domain-Specific LLMs
Chengyuan Liu | Yangyang Kang | Shihang Wang | Lizhi Qing | Fubang Zhao | Chao Wu | Changlong Sun | Kun Kuang | Fei Wu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The performance on general tasks decreases after Large Language Models (LLMs) are fine-tuned on domain-specific tasks, the phenomenon is known as Catastrophic Forgetting (CF). However, this paper presents a further challenge for real application of domain-specific LLMs beyond CF, called General Capabilities Integration (GCI), which necessitates the integration of both the general capabilities and domain knowledge within a single instance. The objective of GCI is not merely to retain previously acquired general capabilities alongside new domain knowledge, but to harmonize and utilize both sets of skills in a cohesive manner to enhance performance on domain-specific tasks. Taking legal domain as an example, we carefully design three groups of training and testing tasks without lacking practicability, and construct the corresponding datasets. To better incorporate general capabilities across domain-specific scenarios, we introduce ALoRA, which utilizes a multi-head attention module upon LoRA, facilitating direct information transfer from preceding tokens to the current one. This enhancement permits the representation to dynamically switch between domain-specific knowledge and general competencies according to the attention. Extensive experiments are conducted on the proposed tasks. The results exhibit the significance of our setting, and the effectiveness of our method.

pdf bib
Evolving Knowledge Distillation with Large Language Models and Active Learning
Chengyuan Liu | Fubang Zhao | Kun Kuang | Yangyang Kang | Zhuoren Jiang | Changlong Sun | Fei Wu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Large language models (LLMs) have demonstrated remarkable capabilities across various NLP tasks. However, their computational costs are prohibitively high. To address this issue, previous research has attempted to distill the knowledge of LLMs into smaller models by generating annotated data. Nonetheless, these works have mainly focused on the direct use of LLMs for text generation and labeling, without fully exploring their potential to comprehend the target task and acquire valuable knowledge. In this paper, we propose EvoKD: Evolving Knowledge Distillation, which leverages the concept of active learning to interactively enhance the process of data generation using large language models, simultaneously improving the task capabilities of small domain model (student model). Different from previous work, we actively analyze the student model’s weaknesses, and then synthesize labeled samples based on the analysis. In addition, we provide iterative feedback to the LLMs regarding the student model’s performance to continuously construct diversified and challenging samples. Experiments and analysis on different NLP tasks, namely, text classification and named entity recognition show the effectiveness of EvoKD.

2023

pdf bib
RexUIE: A Recursive Method with Explicit Schema Instructor for Universal Information Extraction
Chengyuan Liu | Fubang Zhao | Yangyang Kang | Jingyuan Zhang | Xiang Zhou | Changlong Sun | Kun Kuang | Fei Wu
Findings of the Association for Computational Linguistics: EMNLP 2023

Universal Information Extraction (UIE) is an area of interest due to the challenges posed by varying targets, heterogeneous structures, and demand-specific schemas. Previous works have achieved success by unifying a few tasks, such as Named Entity Recognition (NER) and Relation Extraction (RE), while they fall short of being true UIE models particularly when extracting other general schemas such as quadruples and quintuples. Additionally, these models used an implicit structural schema instructor, which could lead to incorrect links between types, hindering the model’s generalization and performance in low-resource scenarios. In this paper, we redefine the true UIE with a formal formulation that covers almost all extraction schemas. To the best of our knowledge, we are the first to introduce UIE for any kind of schemas. In addition, we propose RexUIE, which is a Recursive Method with Explicit Schema Instructor for UIE. To avoid interference between different types, we reset the position ids and attention mask matrices. RexUIE shows strong performance under both full-shot and few-shot settings and achieves state-of-the-art results on the tasks of extracting complex schemas.

pdf bib
Labels are not necessary: Assessing peer-review helpfulness using domain adaptation based on self-training
Chengyuan Liu | Divyang Doshi | Muskaan Bhargava | Ruixuan Shang | Jialin Cui | Dongkuan Xu | Edward Gehringer
Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023)

A peer-assessment system allows students to provide feedback on each other’s work. An effective peer assessment system urgently requires helpful reviews to facilitate students to make improvements and progress. Automated evaluation of review helpfulness, with the help of deep learning models and natural language processing techniques, gains much interest in the field of peer assessment. However, collecting labeled data with the “helpfulness” tag to build these prediction models remains challenging. A straightforward solution would be using a supervised learning algorithm to train a prediction model on a similar domain and apply it to our peer review domain for inference. But naively doing so can degrade the model performance in the presence of the distributional gap between domains. Such a distributional gap can be effectively addressed by Domain Adaptation (DA). Self-training has recently been shown as a powerful branch of DA to address the distributional gap. The first goal of this study is to evaluate the performance of self-training-based DA in predicting the helpfulness of peer reviews as well as the ability to overcome the distributional gap. Our second goal is to propose an advanced self-training framework to overcome the weakness of the existing self-training by tailoring knowledge distillation and noise injection, to further improve the model performance and better address the distributional gap.

2022

pdf bib
Investigating the Robustness of Natural Language Generation from Logical Forms via Counterfactual Samples
Chengyuan Liu | Leilei Gan | Kun Kuang | Fei Wu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

The aim of Logic2Text is to generate controllable and faithful texts conditioned on tables and logical forms, which not only requires a deep understanding of the tables and logical forms, but also warrants symbolic reasoning over the tables according to the logical forms. State-of-the-art methods based on pre-trained models have achieved remarkable performance on the standard test dataset. However, we question whether these methods really learn how to perform logical reasoning, rather than just relying on the spurious correlations between the headers of the tables and operators of the logical form. To verify this hypothesis, we manually construct a set of counterfactual samples, which modify the original logical forms to generate counterfactual logical forms with rare co-occurred headers and operators and corresponding counterfactual references. SOTA methods give much worse results on these counterfactual samples compared with the results on the original test dataset, which verifies our hypothesis. To deal with this problem, we firstly analyze this bias from a causal perspective, based on which we propose two approaches to reduce the model’s reliance on the shortcut. The first one incorporates the hierarchical structure of the logical forms into the model. The second one exploits automatically generated counterfactual data for training. Automatic and manual experimental results on the original test dataset and counterfactual dataset show that our method is effective to alleviate the spurious correlation. Our work points out the weakness of current methods and takes a further step toward developing Logic2Text models with real logical reasoning ability.