2024
pdf
bib
abs
Overview of the Shared Task on Machine Translation Gender Bias Evaluation with Multilingual Holistic Bias
Marta Costa-jussà
|
Pierre Andrews
|
Christine Basta
|
Juan Ciro
|
Agnieszka Falenska
|
Seraphina Goldfarb-Tarrant
|
Rafael Mosquera
|
Debora Nozza
|
Eduardo Sánchez
Proceedings of the 5th Workshop on Gender Bias in Natural Language Processing (GeBNLP)
We describe the details of the Shared Task of the 5th ACL Workshop on Gender Bias in Natural Language Processing (GeBNLP 2024). The task uses dataset to investigate the quality of Machine Translation systems on a particular case of gender robustness. We report baseline results as well as the results of the first participants. The shared task will be permanently available in the Dynabench platform.
pdf
bib
abs
Machine Translation Hallucination Detection for Low and High Resource Languages using Large Language Models
Kenza Benkirane
|
Laura Gongas
|
Shahar Pelles
|
Naomi Fuchs
|
Joshua Darmon
|
Pontus Stenetorp
|
David Ifeoluwa Adelani
|
Eduardo Sánchez
Findings of the Association for Computational Linguistics: EMNLP 2024
Recent advancements in massively multilingual machine translation systems have significantly enhanced translation accuracy; however, even the best performing systems still generate hallucinations, severely impacting user trust. Detecting hallucinations in Machine Translation (MT) remains a critical challenge, particularly since existing methods excel with High-Resource Languages (HRLs) but exhibit substantial limitations when applied to Low-Resource Languages (LRLs). This paper evaluates sentence-level hallucination detection approaches using Large Language Models (LLMs) and semantic similarity within massively multilingual embeddings. Our study spans 16 language directions, covering HRLs, LRLs, with diverse scripts. We find that the choice of model is essential for performance. On average, for HRLs, Llama3-70B outperforms the previous state of the art by as much as 0.16 MCC (Matthews Correlation Coefficient). However, for LRLs we observe that Claude Sonnet outperforms other LLMs on average by 0.03 MCC. The key takeaway from our study is that LLMs can achieve performance comparable or even better than previously proposed models, despite not being explicitly trained for any machine translation task. However, their advantage is less significant for LRLs.
pdf
bib
abs
Gender-specific Machine Translation with Large Language Models
Eduardo Sánchez
|
Pierre Andrews
|
Pontus Stenetorp
|
Mikel Artetxe
|
Marta R. Costa-jussà
Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)
‘While machine translation (MT) systems have seen significant improvements,it is still common for translations to reflect societal biases, such as genderbias. Decoder-only language models (LLMs) have demonstrated potential in MT, albeitwith performance slightly lagging behind traditional encoder-decoder neural machinetranslation (NMT) systems. However, LLMs offer a unique advantage: the abilityto control the properties of the output through prompting. In this study, we leveragethis flexibility to explore Llama”s capability to produce gender-specific translations.Our results indicate that Llama can generate gender-specific translations withtranslation quality and gender bias comparable to NLLB, a state-of-the-art multilingualNMT system.’