While large language models (LLMs) are extremely capable at text generation, their outputs are still distinguishable from human-authored text. We explore this separation across many metrics over text, many sampling techniques, many types of text data, and across two popular LLMs, LLaMA and Vicuna. Along the way, we introduce a new metric, recoverability, to highlight differences between human and machine text; and we propose a new sampling technique, burst sampling, designed to close this gap. We find that LLaMA and Vicuna have distinct distributions under many of the metrics, and that this influences our results: Recoverability separates real from fake text better than any other metric when using LLaMA. When using Vicuna, burst sampling produces text which is distributionally closer to real text compared to other sampling techniques.
Schizophrenia is one of the most disabling mental health conditions to live with. Approximately one percent of the population has schizophrenia which makes it fairly common, and it affects many people and their families. Patients with schizophrenia suffer different symptoms: formal thought disorder (FTD), delusions, and emotional flatness. In this paper, we quantitatively and qualitatively analyze the language of patients with schizophrenia measuring various linguistic features in two modalities: speech and written text. We examine the following features: coherence and cohesion of thoughts, emotions, specificity, level of commit- ted belief (LCB), and personality traits. Our results show that patients with schizophrenia score high in fear and neuroticism compared to healthy controls. In addition, they are more committed to their beliefs, and their writing lacks details. They score lower in most of the linguistic features of cohesion with significant p-values.
We release an urgency dataset that consists of English tweets relating to natural crises, along with annotations of their corresponding urgency status. Additionally, we release evaluation datasets for two low-resource languages, i.e. Sinhala and Odia, and demonstrate an effective zero-shot transfer from English to these two languages by training cross-lingual classifiers. We adopt cross-lingual embeddings constructed using different methods to extract features of the tweets, including a few state-of-the-art contextual embeddings such as BERT, RoBERTa and XLM-R. We train classifiers of different architectures on the extracted features. We also explore semi-supervised approaches by utilizing unlabeled tweets and experiment with ensembling different classifiers. With very limited amounts of labeled data in English and zero data in the low resource languages, we show a successful framework of training monolingual and cross-lingual classifiers using deep learning methods which are known to be data hungry. Specifically, we show that the recent deep contextual embeddings are also helpful when dealing with very small-scale datasets. Classifiers that incorporate RoBERTa yield the best performance for English urgency detection task, with F1 scores that are more than 25 points over our baseline classifier. For the zero-shot transfer to low resource languages, classifiers that use LASER features perform the best for Sinhala transfer while XLM-R features benefit the Odia transfer the most.
We present scalable Universal Dependency (UD) treebank synthesis techniques that exploit advances in language representation modeling which leverage vast amounts of unlabeled general-purpose multilingual text. We introduce a data augmentation technique that uses synthetic treebanks to improve production-grade parsers. The synthetic treebanks are generated using a state-of-the-art biaffine parser adapted with pretrained Transformer models, such as Multilingual BERT (M-BERT). The new parser improves LAS by up to two points on seven languages. The production models’ LAS performance improves as the augmented treebanks scale in size, surpassing performance of production models trained on originally annotated UD treebanks.
Transfer learning techniques are particularly useful for NLP tasks where a sizable amount of high-quality annotated data is difficult to obtain. Current approaches directly adapt a pretrained language model (LM) on in-domain text before fine-tuning to downstream tasks. We show that extending the vocabulary of the LM with domain-specific terms leads to further gains. To a bigger effect, we utilize structure in the unlabeled data to create auxiliary synthetic tasks, which helps the LM transfer to downstream tasks. We apply these approaches incrementally on a pretrained Roberta-large LM and show considerable performance gain on three tasks in the IT domain: Extractive Reading Comprehension, Document Ranking and Duplicate Question Detection.
Answer validation in machine reading comprehension (MRC) consists of verifying an extracted answer against an input context and question pair. Previous work has looked at re-assessing the “answerability” of the question given the extracted answer. Here we address a different problem: the tendency of existing MRC systems to produce partially correct answers when presented with answerable questions. We explore the nature of such errors and propose a post-processing correction method that yields statistically significant performance improvements over state-of-the-art MRC systems in both monolingual and multilingual evaluation.
Distributed word embeddings have become ubiquitous in natural language processing as they have been shown to improve performance in many semantic and syntactic tasks. Popular models for learning cross-lingual word embeddings do not consider the morphology of words. We propose an approach to learn bilingual embeddings using parallel data and subword information that is expressed in various forms, i.e. character n-grams, morphemes obtained by unsupervised morphological segmentation and byte pair encoding. We report results for three low resource morphologically rich languages (Swahili, Tagalog, and Somali) and a high resource language (German) in a simulated a low-resource scenario. Our results show that our method that leverages subword information outperforms the model without subword information, both in intrinsic and extrinsic evaluations of the learned embeddings. Specifically, analogy reasoning results show that using subwords helps capture syntactic characteristics. Semantically, word similarity results and intrinsically, word translation scores demonstrate superior performance over existing methods. Finally, qualitative analysis also shows better-quality cross-lingual embeddings particularly for morphological variants in both languages.
Schizophrenia is one of the most disabling and difficult to treat of all human medical/health conditions, ranking in the top ten causes of disability worldwide. It has been a puzzle in part due to difficulty in identifying its basic, fundamental components. Several studies have shown that some manifestations of schizophrenia (e.g., the negative symptoms that include blunting of speech prosody, as well as the disorganization symptoms that lead to disordered language) can be understood from the perspective of linguistics. However, schizophrenia research has not kept pace with technologies in computational linguistics, especially in semantics and pragmatics. As such, we examine the writings of schizophrenia patients analyzing their syntax, semantics and pragmatics. In addition, we analyze tweets of (self proclaimed) schizophrenia patients who publicly discuss their diagnoses. For writing samples dataset, syntactic features are found to be the most successful in classification whereas for the less structured Twitter dataset, a combination of features performed the best.