Francesco Tinner


2024

pdf bib
Findings of the 2nd Shared Task on Multi-lingual Multi-task Information Retrieval at MRL 2024
Francesco Tinner | Raghav Mantri | Mammad Hajili | Chiamaka Chukwuneke | Dylan Massey | Benjamin A. Ajibade | Bilge Deniz Kocak | Abolade Dawud | Jonathan Atala | Hale Sirin | Kayode Olaleye | Anar Rzayev | Jafar Isbarov | Dursun Dashdamirov | David Adelani | Duygu Ataman
Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)

Large language models (LLMs) demonstrate exceptional proficiency in both the comprehension and generation of textual data, particularly in English, a language for which extensive public benchmarks have been established across a wide range of natural language processing (NLP) tasks. Nonetheless, their performance in multilingual contexts and specialized domains remains less rigorously validated, raising questions about their reliability and generalizability across linguistically diverse and domain-specific settings. The second edition of the Shared Task on Multilingual Multitask Information Retrieval aims to provide a comprehensive and inclusive multilingual evaluation benchmark which aids assessing the ability of multilingual LLMs to capture logical, factual, or causal relationships within lengthy text contexts and generate language under sparse settings, particularly in scenarios with under-resourced languages. The shared task consists of two subtasks crucial to information retrieval: Named entity recognition (NER) and reading comprehension (RC), in 7 data-scarce languages: Azerbaijani, Swiss German, Turkish and , which previously lacked annotated resources in information retrieval tasks. This year specifally focus on the multiple-choice question answering evaluation setting which provides a more objective setting for comparing different methods across languages.

2023

pdf bib
Findings of the 1st Shared Task on Multi-lingual Multi-task Information Retrieval at MRL 2023
Francesco Tinner | David Ifeoluwa Adelani | Chris Emezue | Mammad Hajili | Omer Goldman | Muhammad Farid Adilazuarda | Muhammad Dehan Al Kautsar | Aziza Mirsaidova | Müge Kural | Dylan Massey | Chiamaka Chukwuneke | Chinedu Mbonu | Damilola Oluwaseun Oloyede | Kayode Olaleye | Jonathan Atala | Benjamin A. Ajibade | Saksham Bassi | Rahul Aralikatte | Najoung Kim | Duygu Ataman
Proceedings of the 3rd Workshop on Multi-lingual Representation Learning (MRL)

2022

pdf bib
The MRL 2022 Shared Task on Multilingual Clause-level Morphology
Omer Goldman | Francesco Tinner | Hila Gonen | Benjamin Muller | Victoria Basmov | Shadrack Kirimi | Lydia Nishimwe | Benoît Sagot | Djamé Seddah | Reut Tsarfaty | Duygu Ataman
Proceedings of the 2nd Workshop on Multi-lingual Representation Learning (MRL)

The 2022 Multilingual Representation Learning (MRL) Shared Task was dedicated to clause-level morphology. As the first ever benchmark that defines and evaluates morphology outside its traditional lexical boundaries, the shared task on multilingual clause-level morphology sets the scene for competition across different approaches to morphological modeling, with 3 clause-level sub-tasks: morphological inflection, reinflection and analysis, where systems are required to generate, manipulate or analyze simple sentences centered around a single content lexeme and a set of morphological features characterizing its syntactic clause. This year’s tasks covered eight typologically distinct languages: English, French, German, Hebrew, Russian, Spanish, Swahili and Turkish. The tasks has received submissions of four systems from three teams which were compared to two baselines implementing prominent multilingual learning methods. The results show that modern NLP models are effective in solving morphological tasks even at the clause level. However, there is still room for improvement, especially in the task of morphological analysis.