Exploring the capabilities of Large Language Models (LLMs) in puzzle solving unveils critical insights into their potential and challenges in AI, marking a significant step towards understanding their applicability in complex reasoning tasks. This survey leverages a unique taxonomy—dividing puzzles into rule-based and rule-less categories—to critically assess LLMs through various methodologies, including prompting techniques, neuro-symbolic approaches, and fine-tuning. Through a critical review of relevant datasets and benchmarks, we assess LLMs’ performance, identifying significant challenges in complex puzzle scenarios. Our findings highlight the disparity between LLM capabilities and human-like reasoning, particularly in those requiring advanced logical inference. The survey underscores the necessity for novel strategies and richer datasets to advance LLMs’ puzzle-solving proficiency and contribute to AI’s logical reasoning and creative problem-solving advancements.
Equivocation and ambiguity in public speech are well-studied discourse phenomena, especially in political science and analysis of political interviews. Inspired by the well-grounded theory on equivocation, we aim to resolve the closely related problem of response clarity in questions extracted from political interviews, leveraging the capabilities of Large Language Models (LLMs) and human expertise. To this end, we introduce a novel taxonomy that frames the task of detecting and classifying response clarity and a corresponding clarity classification dataset which consists of question-answer (QA) pairs drawn from political interviews and annotated accordingly. Our proposed two-level taxonomy addresses the clarity of a response in terms of the information provided for a given question (high-level) and also provides a fine-grained taxonomy of evasion techniques that relate to unclear, ambiguous responses (lower-level). We combine ChatGPT and human annotators to collect, validate and annotate discrete QA pairs from political interviews, to be used for our newly introduced response clarity task. We provide a detailed analysis and conduct several experiments with different model architectures, sizes and adaptation methods to gain insights and establish new baselines over the proposed dataset and task.
As NLP models become increasingly integral to decision-making processes, the need for explainability and interpretability has become paramount. In this work, we propose a framework that achieves the aforementioned by generating semantically edited inputs, known as counterfactual interventions, which change the model prediction, thus providing a form of counterfactual explanations for the model. We frame the search for optimal counterfactual interventions as a graph assignment problem and employ a GNN to solve it, thus achieving high efficiency. We test our framework on two NLP tasks - binary sentiment classification and topic classification - and show that the generated edits are contrastive, fluent and minimal, while the whole process remains significantly faster than other state-of-the-art counterfactual editors.
The surge of state-of-the-art transformer-based models has undoubtedly pushed the limits of NLP model performance, excelling in a variety of tasks. We cast the spotlight on the underexplored task of Natural Language Inference (NLI), since models trained on popular well-suited datasets are susceptible to adversarial attacks, allowing subtle input interventions to mislead the model. In this work, we validate the usage of natural language explanation as a model-agnostic defence strategy through extensive experimentation: only by fine-tuning a classifier on the explanation rather than premise-hypothesis inputs, robustness under various adversarial attacks is achieved in comparison to explanation-free baselines. Moreover, since there is no standard strategy for testing the semantic validity of the generated explanations, we research the correlation of widely used language generation metrics with human perception, in order for them to serve as a proxy towards robust NLI models. Our approach is resource-efficient and reproducible without significant computational limitations.