Gokul Nc
2023
Aksharantar: Open Indic-language Transliteration datasets and models for the Next Billion Users
Yash Madhani
|
Sushane Parthan
|
Priyanka Bedekar
|
Gokul Nc
|
Ruchi Khapra
|
Anoop Kunchukuttan
|
Pratyush Kumar
|
Mitesh Khapra
Findings of the Association for Computational Linguistics: EMNLP 2023
Transliteration is very important in the Indian language context due to the usage of multiple scripts and the widespread use of romanized inputs. However, few training and evaluation sets are publicly available. We introduce Aksharantar, the largest publicly available transliteration dataset for Indian languages created by mining from monolingual and parallel corpora, as well as collecting data from human annotators. The dataset contains 26 million transliteration pairs for 21 Indic languages from 3 language families using 12 scripts. Aksharantar is 21 times larger than existing datasets and is the first publicly available dataset for 7 languages and 1 language family. We also introduce a test set of 103k word pairs for 19 languages that enables a fine-grained analysis of transliteration models on native origin words, foreign words, frequent words, and rare words. Using the training set, we trained IndicXlit, a multilingual transliteration model that improves accuracy by 15% on the Dakshina test set, and establishes strong baselines on the Aksharantar testset introduced in this work. The models, mining scripts, transliteration guidelines, and datasets are available at https://github.com/AI4Bharat/IndicXlit under open-source licenses.
2022
OpenHands: Making Sign Language Recognition Accessible with Pose-based Pretrained Models across Languages
Prem Selvaraj
|
Gokul Nc
|
Pratyush Kumar
|
Mitesh Khapra
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
AI technologies for Natural Languages have made tremendous progress recently. However, commensurate progress has not been made on Sign Languages, in particular, in recognizing signs as individual words or as complete sentences. We introduce OpenHands, a library where we take four key ideas from the NLP community for low-resource languages and apply them to sign languages for word-level recognition. First, we propose using pose extracted through pretrained models as the standard modality of data in this work to reduce training time and enable efficient inference, and we release standardized pose datasets for different existing sign language datasets. Second, we train and release checkpoints of 4 pose-based isolated sign language recognition models across 6 languages (American, Argentinian, Chinese, Greek, Indian, and Turkish), providing baselines and ready checkpoints for deployment. Third, to address the lack of labelled data, we propose self-supervised pretraining on unlabelled data. We curate and release the largest pose-based pretraining dataset on Indian Sign Language (Indian-SL). Fourth, we compare different pretraining strategies and for the first time establish that pretraining is effective for sign language recognition by demonstrating (a) improved fine-tuning performance especially in low-resource settings, and (b) high crosslingual transfer from Indian-SL to few other sign languages. We open-source all models and datasets in OpenHands with a hope that it makes research in sign languages reproducible and more accessible.
Search
Fix data
Co-authors
- Mitesh M. Khapra 2
- Pratyush Kumar 2
- Priyanka Bedekar 1
- Ruchi Khapra 1
- Anoop Kunchukuttan 1
- show all...