Hanxing Ding
2024
When to Trust LLMs: Aligning Confidence with Response Quality
Shuchang Tao
|
Liuyi Yao
|
Hanxing Ding
|
Yuexiang Xie
|
Qi Cao
|
Fei Sun
|
Jinyang Gao
|
Huawei Shen
|
Bolin Ding
Findings of the Association for Computational Linguistics: ACL 2024
Despite the success of large language models (LLMs) in natural language generation, much evidence shows that LLMs may produce incorrect or nonsensical text. This limitation highlights the importance of discerning when to trust LLMs, especially in safety-critical domains. Existing methods often express reliability by confidence level, however, their effectiveness is limited by the lack of objective guidance. To address this, we propose CONfidence-Quality-ORDer-preserving alignment approach (CONQORD), which leverages reinforcement learning guided by a tailored dual-component reward function. This function integrates quality reward and order-preserving alignment reward functions. Specifically, the order-preserving reward incentivizes the model to verbalize greater confidence for responses of higher quality to align the order of confidence and quality. Experiments demonstrate that CONQORD significantly improves the alignment performance between confidence and response accuracy, without causing over-cautious. Furthermore, the aligned confidence provided by CONQORD informs when to trust LLMs, and acts as a determinant for initiating the retrieval process of external knowledge. Aligning confidence with response quality ensures more transparent and reliable responses, providing better trustworthiness.
2023
MacLaSa: Multi-Aspect Controllable Text Generation via Efficient Sampling from Compact Latent Space
Hanxing Ding
|
Liang Pang
|
Zihao Wei
|
Huawei Shen
|
Xueqi Cheng
|
Tat-Seng Chua
Findings of the Association for Computational Linguistics: EMNLP 2023
Multi-aspect controllable text generation aims to generate fluent sentences that possess multiple desired attributes simultaneously. Traditional methods either require expensive iteration / searching within the discrete text space during the decoding stage, or train separate controllers for each aspect, resulting in a degradation of text quality due to the discrepancy between different aspects. To address these limitations, we introduce a novel approach for Multi-aspect control, namely MacLaSa, that estimates compact Latent space for multiple aspects, and performs efficient Sampling with a fast sampler. To eliminate the domain discrepancies between different aspects, we first utilize a variational autoencoder (VAE) network to map text sequences from various data sources into close latent representations. The estimated latent space enables the formulation of joint energy-based models and the plugging in of arbitrary attribute discriminators to achieve multi-aspect control. Afterwards, we draw latent samples with a fast sampler based on ordinary differential equations and feed sampled examples to the VAE decoder to produce target text sequences. Experimental results demonstrate that MacLaSa outperforms strong baselines on both attribute relevance and textual quality while maintaining a high inference speed.
Search
Fix data
Co-authors
- Huawei Shen 2
- Qi Cao 1
- Xueqi Cheng 1
- Tat-Seng Chua 1
- Bolin Ding 1
- show all...