Hongzhan Lin


2024

pdf bib
CofiPara: A Coarse-to-fine Paradigm for Multimodal Sarcasm Target Identification with Large Multimodal Models
Zixin Chen | Hongzhan Lin | Ziyang Luo | Mingfei Cheng | Jing Ma | Guang Chen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Social media abounds with multimodal sarcasm, and identifying sarcasm targets is particularly challenging due to the implicit incongruity not directly evident in the text and image modalities. Current methods for Multimodal Sarcasm Target Identification (MSTI) predominantly focus on superficial indicators in an end-to-end manner, overlooking the nuanced understanding of multimodal sarcasm conveyed through both the text and image. This paper proposes a versatile MSTI framework with a coarse-to-fine paradigm, by augmenting sarcasm explainability with reasoning and pre-training knowledge. Inspired by the powerful capacity of Large Multimodal Models (LMMs) on multimodal reasoning, we first engage LMMs to generate competing rationales for coarser-grained pre-training of a small language model on multimodal sarcasm detection. We then propose fine-tuning the model for finer-grained sarcasm target identification. Our framework is thus empowered to adeptly unveil the intricate targets within multimodal sarcasm and mitigate the negative impact posed by potential noise inherently in LMMs. Experimental results demonstrate that our model far outperforms state-of-the-art MSTI methods, and markedly exhibits explainability in deciphering sarcasm as well.

pdf bib
AMR-Evol: Adaptive Modular Response Evolution Elicits Better Knowledge Distillation for Large Language Models in Code Generation
Ziyang Luo | Xin Li | Hongzhan Lin | Jing Ma | Lidong Bing
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The impressive performance of proprietary LLMs like GPT4 in code generation has led to a trend to replicate these capabilities in open-source models through knowledge distillation (e.g. Code Evol-Instruct). However, these efforts often neglect the crucial aspect of response quality, relying heavily on teacher models for direct response distillation. This paradigm, especially for complex instructions, can degrade the quality of synthesized data, compromising the knowledge distillation process. To this end, our study introduces the Adaptive Modular Response Evolution (AMR-Evol) framework, which employs a two-stage process to refine response distillation. The first stage, modular decomposition, breaks down the direct response into more manageable sub-modules. The second stage, adaptive response evolution, automatically evolves the response with the related function modules. Our experiments with three popular code benchmarks—HumanEval, MBPP, and EvalPlus—attests to the superiority of the AMR-Evol framework over baseline response distillation methods. By comparing with the open-source Code LLMs trained on a similar scale of data, we observed performance enhancements: more than +3.0 points on HumanEval-Plus and +1.0 points on MBPP-Plus, which underscores the effectiveness of our framework. Our codes are available at https://github.com/ChiYeungLaw/AMR-Evol.

pdf bib
Towards Low-Resource Harmful Meme Detection with LMM Agents
Jianzhao Huang | Hongzhan Lin | Liu Ziyan | Ziyang Luo | Guang Chen | Jing Ma
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The proliferation of Internet memes in the age of social media necessitates effective identification of harmful ones. Due to the dynamic nature of memes, existing data-driven models may struggle in low-resource scenarios where only a few labeled examples are available. In this paper, we propose an agency-driven framework for low-resource harmful meme detection, employing both outward and inward analysis with few-shot annotated samples. Inspired by the powerful capacity of Large Multimodal Models (LMMs) on multimodal reasoning, we first retrieve relative memes with annotations to leverage label information as auxiliary signals for the LMM agent. Then, we elicit knowledge-revising behavior within the LMM agent to derive well-generalized insights into meme harmfulness. By combining these strategies, our approach enables dialectical reasoning over intricate and implicit harm-indicative patterns. Extensive experiments conducted on three meme datasets demonstrate that our proposed approach achieves superior performance than state-of-the-art methods on the low-resource harmful meme detection task.

pdf bib
Reinforcement Tuning for Detecting Stances and Debunking Rumors Jointly with Large Language Models
Ruichao Yang | Wei Gao | Jing Ma | Hongzhan Lin | Bo Wang
Findings of the Association for Computational Linguistics: ACL 2024

Learning multi-task models for jointly detecting stance and verifying rumors poses challenges due to the need for training data of stance at post level and rumor veracity at claim level, which are difficult to obtain. To address this issue, we leverage large language models (LLMs) as the foundation annotators for the joint stance detection (SD) and rumor verification (RV) tasks, dubbed as JSDRV. We introduce a novel reinforcement tuning framework to enhance the joint predictive capabilities of LLM-based SD and RV components. Specifically, we devise a policy for selecting LLM-annotated data at the two levels, employing a hybrid reward mechanism to choose high-quality labels for effective LLM fine-tuning on both tasks. Results demonstrate that JSDRV improves the capabilities of LLMs in the joint tasks, not only outperforming state-of-the-art methods but also generalizing to non-LLMs accommodated as task models.

2023

pdf bib
WSDMS: Debunk Fake News via Weakly Supervised Detection of Misinforming Sentences with Contextualized Social Wisdom
Ruichao Yang | Wei Gao | Jing Ma | Hongzhan Lin | Zhiwei Yang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Fake news debunking primarily focuses on determining the truthfulness of news articles, which oversimplifies the issue as fake news often combines elements of both truth and falsehood. Thus, it becomes crucial to identify specific instances of misinformation within the articles. In this research, we investigate a novel task in the field of fake news debunking, which involves detecting sentence-level misinformation. One of the major challenges in this task is the absence of a training dataset with sentence-level annotations regarding veracity. Inspired by the Multiple Instance Learning (MIL) approach, we propose a model called Weakly Supervised Detection of Misinforming Sentences (WSDMS). This model only requires bag-level labels for training but is capable of inferring both sentence-level misinformation and article-level veracity, aided by relevant social media conversations that are attentively contextualized with news sentences. We evaluate WSDMS on three real-world benchmarks and demonstrate that it outperforms existing state-of-the-art baselines in debunking fake news at both the sentence and article levels.

pdf bib
Beneath the Surface: Unveiling Harmful Memes with Multimodal Reasoning Distilled from Large Language Models
Hongzhan Lin | Ziyang Luo | Jing Ma | Long Chen
Findings of the Association for Computational Linguistics: EMNLP 2023

The age of social media is rife with memes. Understanding and detecting harmful memes pose a significant challenge due to their implicit meaning that is not explicitly conveyed through the surface text and image. However, existing harmful meme detection approaches only recognize superficial harm-indicative signals in an end-to-end classification manner but ignore in-depth cognition of the meme text and image. In this paper, we attempt to detect harmful memes based on advanced reasoning over the interplay of multimodal information in memes. Inspired by the success of Large Language Models (LLMs) on complex reasoning, we first conduct abductive reasoning with LLMs. Then we propose a novel generative framework to learn reasonable thoughts from LLMs for better multimodal fusion and lightweight fine-tuning, which consists of two training stages: 1) Distill multimodal reasoning knowledge from LLMs; and 2) Fine-tune the generative framework to infer harmfulness. Extensive experiments conducted on three meme datasets demonstrate that our proposed approach achieves superior performance than state-of-the-art methods on the harmful meme detection task.

2022

pdf bib
A Coarse-to-fine Cascaded Evidence-Distillation Neural Network for Explainable Fake News Detection
Zhiwei Yang | Jing Ma | Hechang Chen | Hongzhan Lin | Ziyang Luo | Yi Chang
Proceedings of the 29th International Conference on Computational Linguistics

Existing fake news detection methods aim to classify a piece of news as true or false and provide veracity explanations, achieving remarkable performances. However, they often tailor automated solutions on manual fact-checked reports, suffering from limited news coverage and debunking delays. When a piece of news has not yet been fact-checked or debunked, certain amounts of relevant raw reports are usually disseminated on various media outlets, containing the wisdom of crowds to verify the news claim and explain its verdict. In this paper, we propose a novel Coarse-to-fine Cascaded Evidence-Distillation (CofCED) neural network for explainable fake news detection based on such raw reports, alleviating the dependency on fact-checked ones. Specifically, we first utilize a hierarchical encoder for web text representation, and then develop two cascaded selectors to select the most explainable sentences for verdicts on top of the selected top-K reports in a coarse-to-fine manner. Besides, we construct two explainable fake news datasets, which is publicly available. Experimental results demonstrate that our model significantly outperforms state-of-the-art detection baselines and generates high-quality explanations from diverse evaluation perspectives.

pdf bib
Detect Rumors in Microblog Posts for Low-Resource Domains via Adversarial Contrastive Learning
Hongzhan Lin | Jing Ma | Liangliang Chen | Zhiwei Yang | Mingfei Cheng | Chen Guang
Findings of the Association for Computational Linguistics: NAACL 2022

Massive false rumors emerging along with breaking news or trending topics severely hinder the truth. Existing rumor detection approaches achieve promising performance on the yesterday’s news, since there is enough corpus collected from the same domain for model training. However, they are poor at detecting rumors about unforeseen events especially those propagated in minority languages due to the lack of training data and prior knowledge (i.e., low-resource regimes). In this paper, we propose an adversarial contrastive learning framework to detect rumors by adapting the features learned from well-resourced rumor data to that of the low-resourced. Our model explicitly overcomes the restriction of domain and/or language usage via language alignment and a novel supervised contrastive training paradigm. Moreover, we develop an adversarial augmentation mechanism to further enhance the robustness of low-resource rumor representation. Extensive experiments conducted on two low-resource datasets collected from real-world microblog platforms demonstrate that our framework achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.

2021

pdf bib
Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks
Hongzhan Lin | Jing Ma | Mingfei Cheng | Zhiwei Yang | Liangliang Chen | Guang Chen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Rumors are rampant in the era of social media. Conversation structures provide valuable clues to differentiate between real and fake claims. However, existing rumor detection methods are either limited to the strict relation of user responses or oversimplify the conversation structure. In this study, to substantially reinforces the interaction of user opinions while alleviating the negative impact imposed by irrelevant posts, we first represent the conversation thread as an undirected interaction graph. We then present a Claim-guided Hierarchical Graph Attention Network for rumor classification, which enhances the representation learning for responsive posts considering the entire social contexts and attends over the posts that can semantically infer the target claim. Extensive experiments on three Twitter datasets demonstrate that our rumor detection method achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.