Huimin Zhao
2024
Chem-FINESE: Validating Fine-Grained Few-shot Entity Extraction through Text Reconstruction
Qingyun Wang
|
Zixuan Zhang
|
Hongxiang Li
|
Xuan Liu
|
Jiawei Han
|
Huimin Zhao
|
Heng Ji
Findings of the Association for Computational Linguistics: EACL 2024
Fine-grained few-shot entity extraction in the chemical domain faces two unique challenges. First, compared with entity extraction tasks in the general domain, sentences from chemical papers usually contain more entities. Moreover, entity extraction models usually have difficulty extracting entities of long-tailed types. In this paper, we propose Chem-FINESE, a novel sequence-to-sequence (seq2seq) based few-shot entity extraction approach, to address these two challenges. Our Chem-FINESE has two components: a seq2seq entity extractor to extract named entities from the input sentence and a seq2seq self-validation module to reconstruct the original input sentence from extracted entities. Inspired by the fact that a good entity extraction system needs to extract entities faithfully, our new self-validation module leverages entity extraction results to reconstruct the original input sentence. Besides, we design a new contrastive loss to reduce excessive copying during the extraction process. Finally, we release ChemNER+, a new fine-grained chemical entity extraction dataset that is annotated by domain experts with the ChemNER schema. Experiments in few-shot settings with both ChemNER+ and CHEMET datasets show that our newly proposed framework has contributed up to 8.26% and 6.84% absolute F1-score gains respectively.
2023
Reaction Miner: An Integrated System for Chemical Reaction Extraction from Textual Data
Ming Zhong
|
Siru Ouyang
|
Yizhu Jiao
|
Priyanka Kargupta
|
Leo Luo
|
Yanzhen Shen
|
Bobby Zhou
|
Xianrui Zhong
|
Xuan Liu
|
Hongxiang Li
|
Jinfeng Xiao
|
Minhao Jiang
|
Vivian Hu
|
Xuan Wang
|
Heng Ji
|
Martin Burke
|
Huimin Zhao
|
Jiawei Han
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
Chemical reactions, as a core entity in the realm of chemistry, hold crucial implications in diverse areas ranging from hands-on laboratory research to advanced computational drug design. Despite a burgeoning interest in employing NLP techniques to extract these reactions, aligning this task with the real-world requirements of chemistry practitioners remains an ongoing challenge. In this paper, we present Reaction Miner, a system specifically designed to interact with raw scientific literature, delivering precise and more informative chemical reactions. Going beyond mere extraction, Reaction Miner integrates a holistic workflow: it accepts PDF files as input, bypassing the need for pre-processing and bolstering user accessibility. Subsequently, a text segmentation module ensures that the refined text encapsulates complete chemical reactions, augmenting the accuracy of extraction. Moreover, Reaction Miner broadens the scope of existing pre-defined reaction roles, including vital attributes previously neglected, thereby offering a more comprehensive depiction of chemical reactions. Evaluations conducted by chemistry domain users highlight the efficacy of each module in our system, demonstrating Reaction Miner as a powerful tool in this field.