Jesse Mu


2021

pdf bib
Calibrate your listeners! Robust communication-based training for pragmatic speakers
Rose Wang | Julia White | Jesse Mu | Noah Goodman
Findings of the Association for Computational Linguistics: EMNLP 2021

To be good conversational partners, natural language processing (NLP) systems should be trained to produce contextually useful utterances. Prior work has investigated training NLP systems with communication-based objectives, where a neural listener stands in as a communication partner. However, these systems commonly suffer from semantic drift where the learned language diverges radically from natural language. We propose a method that uses a population of neural listeners to regularize speaker training. We first show that language drift originates from the poor uncertainty calibration of a neural listener, which makes high-certainty predictions on novel sentences. We explore ensemble- and dropout-based populations of listeners and find that the former results in better uncertainty quantification. We evaluate both population-based objectives on reference games, and show that the ensemble method with better calibration enables the speaker to generate pragmatic utterances while scaling to a large vocabulary and generalizing to new games and listeners.

2020

pdf bib
Shaping Visual Representations with Language for Few-Shot Classification
Jesse Mu | Percy Liang | Noah Goodman
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

By describing the features and abstractions of our world, language is a crucial tool for human learning and a promising source of supervision for machine learning models. We use language to improve few-shot visual classification in the underexplored scenario where natural language task descriptions are available during training, but unavailable for novel tasks at test time. Existing models for this setting sample new descriptions at test time and use those to classify images. Instead, we propose language-shaped learning (LSL), an end-to-end model that regularizes visual representations to predict language. LSL is conceptually simpler, more data efficient, and outperforms baselines in two challenging few-shot domains.

2019

pdf bib
Learning Outside the Box: Discourse-level Features Improve Metaphor Identification
Jesse Mu | Helen Yannakoudakis | Ekaterina Shutova
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Most current approaches to metaphor identification use restricted linguistic contexts, e.g. by considering only a verb’s arguments or the sentence containing a phrase. Inspired by pragmatic accounts of metaphor, we argue that broader discourse features are crucial for better metaphor identification. We train simple gradient boosting classifiers on representations of an utterance and its surrounding discourse learned with a variety of document embedding methods, obtaining near state-of-the-art results on the 2018 VU Amsterdam metaphor identification task without the complex metaphor-specific features or deep neural architectures employed by other systems. A qualitative analysis further confirms the need for broader context in metaphor processing.

2017

pdf bib
Evaluating Hierarchies of Verb Argument Structure with Hierarchical Clustering
Jesse Mu | Joshua K. Hartshorne | Timothy O’Donnell
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Verbs can only be used with a few specific arrangements of their arguments (syntactic frames). Most theorists note that verbs can be organized into a hierarchy of verb classes based on the frames they admit. Here we show that such a hierarchy is objectively well-supported by the patterns of verbs and frames in English, since a systematic hierarchical clustering algorithm converges on the same structure as the handcrafted taxonomy of VerbNet, a broad-coverage verb lexicon. We also show that the hierarchies capture meaningful psychological dimensions of generalization by predicting novel verb coercions by human participants. We discuss limitations of a simple hierarchical representation and suggest similar approaches for identifying the representations underpinning verb argument structure.