Recently, LLMs have significantly improved code generation, making it increasingly accessible to users. As a result, LLM-powered code generation applications have sprung up, vastly boosting user productivity. This paper mainly explores how to improve the efficiency and experience of users in formatting the document. Specifically, we propose an automatic document formatting method, Text-to-Format, which is driven by various prompting strategies. Text-to-Format takes the user’s formatting instructions and then generates code that can be run in Microsoft Word to format the content in a document. Further, to evaluate automatic document formatting approaches and advance the document formatting task, we built an evaluation specification including a high-quality dataset DocFormEval data, a code runtime environment, and evaluation metrics. Extensive experimental results on data reveal that the prompting strategy’s effect positively correlates with how much knowledge it introduces related to document formatting task. We believe the constructed DocFormEval data and the exploration about Text-to-Format can help developers build more intelligent tools for automatic document formatting, especially in offline scenarios, where the data privacy is the top priority.
The fashion industry is one of the leading domains in the global e-commerce sector, prompting major online retailers to employ recommendation systems for product suggestions and customer convenience. While recommendation systems have been widely studied, most are designed for general e-commerce problems and struggle with the unique challenges of the fashion domain. To address these issues, we propose a sequential fashion recommendation framework that leverages a pre-trained large language model (LLM) enhanced with recommendation-specific prompts. Our framework employs parameter-efficient fine-tuning with extensive fashion data and introduces a novel mix-up-based retrieval technique for translating text into relevant product suggestions. Extensive experiments show our proposed framework significantly enhances fashion recommendation performance.
The rapid development of social media has led to an increase in online harassment and offensive speech, posing significant challenges for effective content moderation. Existing automated detection models often exhibit a bias towards predicting offensive speech based on specific vocabulary, which not only compromises model fairness but also potentially exacerbates biases against vulnerable and minority groups. Addressing these issues, this paper proposes a bias self-awareness and data self-iteration framework for mitigating model biases. This framework aims to “giving control back to models: enabling offensive language detection models to autonomously identify and mitigate biases” through bias self-awareness algorithms and self-iterative data augmentation method. Experimental results demonstrate that the proposed framework effectively reduces the false positive rate of models in both in-distribution and out-of-distribution tests, enhances model accuracy and fairness, and shows promising performance improvements in detecting offensive speech on larger-scale datasets.
Cross-lingual document search is an information retrieval task in which the queries’ language and the documents’ language are different. In this paper, we study the instability of neural document search models and propose a novel end-to-end robust framework that achieves improved performance in cross-lingual search with different documents’ languages. This framework includes a novel measure of the relevance, smooth cosine similarity, between queries and documents, and a novel loss function, Smooth Ordinal Search Loss, as the objective function. We further provide theoretical guarantee on the generalization error bound for the proposed framework. We conduct experiments to compare our approach with other document search models, and observe significant gains under commonly used ranking metrics on the cross-lingual document retrieval task in a variety of languages.