Embeddings from Large Language Models (LLMs) have emerged as critical components in various applications, particularly for information retrieval. While high-dimensional embeddings generally demonstrate superior performance as they contain more salient information, their practical application is frequently hindered by elevated computational latency and the associated higher cost. To address these challenges, we propose Matryoshka-Adaptor, a novel tuning framework designed for the customization of LLM embeddings. Matryoshka-Adaptor facilitates substantial dimensionality reduction while maintaining comparable performance levels, thereby achieving a significant enhancement in computational efficiency and cost-effectiveness. Our framework directly modifies the embeddings from pre-trained LLMs which is designed to be seamlessly integrated with any LLM architecture, encompassing those accessible exclusively through black-box APIs. Also, it exhibits efficacy in both unsupervised and supervised learning settings. A rigorous evaluation conducted across a diverse corpus of English, multilingual, and multimodal datasets consistently reveals substantial gains with Matryoshka-Adaptor. Notably, with Google and OpenAI Embedding APIs, Matryoshka-Adaptor achieves a reduction in dimensionality ranging from two- to twelve-fold without compromising performance across multiple BEIR datasets.
Recent advances in large language models (LLMs) have enabled autonomous agents with complex reasoning and task-fulfillment capabilities using a wide range of tools. However, effectively identifying the most relevant tools for a given task becomes a key bottleneck as the toolset size grows, hindering reliable tool utilization. To address this, we introduce Re-Invoke, an unsupervised tool retrieval method designed to scale effectively to large toolsets without training. Specifically, we first generate a diverse set of synthetic queries that comprehensively cover different aspects of the query space associated with each tool document during the tool indexing phase. Second, we leverage LLM’s query understanding capabilities to extract key tool-related context and underlying intents from user queries during the inference phase. Finally, we employ a novel multi-view similarity ranking strategy based on intents to pinpoint the most relevant tools for each query. Our evaluation demonstrates that Re-Invoke significantly outperforms state-of-the-art alternatives in both single-tool and multi-tool scenarios, all within a fully unsupervised setting. Notably, on the ToolE datasets, we achieve a 20% relative improvement in nDCG@5 for single-tool retrieval and a 39% improvement for multi-tool retrieval.
Embeddings extracted by pre-trained Large Language Models (LLMs) have significant potential to improve information retrieval and search. Beyond the zero-shot setup in which they are being conventionally used, being able to take advantage of the information from the relevant query-corpus paired data can further boost the LLM capabilities. In this paper, we propose a novel method, Search-Adaptor, for customizing LLMs for information retrieval in an efficient and robust way. Search-Adaptor modifies the embeddings generated by pre-trained LLMs, and can be integrated with any LLM, including those only available via prediction APIs. On multiple English, multilingual, and multimodal retrieval datasets, we show consistent and significant performance benefits for Search-Adaptor – e.g., more than 5% improvements for Google Embedding APIs in nDCG@10 averaged over 14 BEIR datasets.
Large language models (LLMs) have recently shown great advances in a variety of tasks, including natural language understanding and generation. However, their use in high-stakes decision-making scenarios is still limited due to the potential for errors. *Selective prediction* is a technique that can be used to improve the reliability of the LLMs by allowing them to abstain from making predictions when they are unsure of the answer. In this work, we propose a novel framework for adaptation with self-evaluation to improve the selective prediction performance of LLMs. Our framework is based on the idea of using parameter-efficient tuning to adapt the LLM to the specific task at hand while improving its ability to perform self-evaluation. We evaluate our method on a variety of question-answering (QA) datasets and show that it outperforms state-of-the-art selective prediction methods. For example, on the CoQA benchmark, our method improves the AUACC from 91.23% to 92.63% and improves the AUROC from 74.61% to 80.25%.