Jonathan Mamou


2023

pdf bib
Finding the SWEET Spot: Analysis and Improvement of Adaptive Inference in Low Resource Settings
Daniel Rotem | Michael Hassid | Jonathan Mamou | Roy Schwartz
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Adaptive inference is a simple method for reducing inference costs. The method works by maintaining multiple classifiers of different capacities, and allocating resources to each test instance according to its difficulty. In this work, we compare the two main approaches for adaptive inference, Early-Exit and Multi-Model, when training data is limited. First, we observe that for models with the same architecture and size, individual Multi-Model classifiers outperform their Early-Exit counterparts by an average of 2.3%. We show that this gap is caused by Early-Exit classifiers sharing model parameters during training, resulting in conflicting gradient updates of model weights. We find that despite this gap, Early-Exit still provides a better speed-accuracy trade-off due to the overhead of the Multi-Model approach. To address these issues, we propose SWEET (Separating Weights for Early-Exit Transformers) an Early-Exit fine-tuning method that assigns each classifier its own set of unique model weights, not updated by other classifiers. We compare SWEET’s speed-accuracy curve to standard Early-Exit and Multi-Model baselines and find that it outperforms both methods at fast speeds while maintaining comparable scores to Early- Exit at slow speeds. Moreover, SWEET individual classifiers outperform Early-Exit ones by 1.1% on average. SWEET enjoys the benefits of both methods, paving the way for further reduction of inference costs in NLP.

2021

pdf bib
Syntactic Perturbations Reveal Representational Correlates of Hierarchical Phrase Structure in Pretrained Language Models
Matteo Alleman | Jonathan Mamou | Miguel A Del Rio | Hanlin Tang | Yoon Kim | SueYeon Chung
Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021)

While vector-based language representations from pretrained language models have set a new standard for many NLP tasks, there is not yet a complete accounting of their inner workings. In particular, it is not entirely clear what aspects of sentence-level syntax are captured by these representations, nor how (if at all) they are built along the stacked layers of the network. In this paper, we aim to address such questions with a general class of interventional, input perturbation-based analyses of representations from pretrained language models. Importing from computational and cognitive neuroscience the notion of representational invariance, we perform a series of probes designed to test the sensitivity of these representations to several kinds of structure in sentences. Each probe involves swapping words in a sentence and comparing the representations from perturbed sentences against the original. We experiment with three different perturbations: (1) random permutations of n-grams of varying width, to test the scale at which a representation is sensitive to word position; (2) swapping of two spans which do or do not form a syntactic phrase, to test sensitivity to global phrase structure; and (3) swapping of two adjacent words which do or do not break apart a syntactic phrase, to test sensitivity to local phrase structure. Results from these probes collectively suggest that Transformers build sensitivity to larger parts of the sentence along their layers, and that hierarchical phrase structure plays a role in this process. More broadly, our results also indicate that structured input perturbations widens the scope of analyses that can be performed on often-opaque deep learning systems, and can serve as a complement to existing tools (such as supervised linear probes) for interpreting complex black-box models.

2020

pdf bib
Controlled Crowdsourcing for High-Quality QA-SRL Annotation
Paul Roit | Ayal Klein | Daniela Stepanov | Jonathan Mamou | Julian Michael | Gabriel Stanovsky | Luke Zettlemoyer | Ido Dagan
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Question-answer driven Semantic Role Labeling (QA-SRL) was proposed as an attractive open and natural flavour of SRL, potentially attainable from laymen. Recently, a large-scale crowdsourced QA-SRL corpus and a trained parser were released. Trying to replicate the QA-SRL annotation for new texts, we found that the resulting annotations were lacking in quality, particularly in coverage, making them insufficient for further research and evaluation. In this paper, we present an improved crowdsourcing protocol for complex semantic annotation, involving worker selection and training, and a data consolidation phase. Applying this protocol to QA-SRL yielded high-quality annotation with drastically higher coverage, producing a new gold evaluation dataset. We believe that our annotation protocol and gold standard will facilitate future replicable research of natural semantic annotations.

pdf bib
QANom: Question-Answer driven SRL for Nominalizations
Ayal Klein | Jonathan Mamou | Valentina Pyatkin | Daniela Stepanov | Hangfeng He | Dan Roth | Luke Zettlemoyer | Ido Dagan
Proceedings of the 28th International Conference on Computational Linguistics

We propose a new semantic scheme for capturing predicate-argument relations for nominalizations, termed QANom. This scheme extends the QA-SRL formalism (He et al., 2015), modeling the relations between nominalizations and their arguments via natural language question-answer pairs. We construct the first QANom dataset using controlled crowdsourcing, analyze its quality and compare it to expertly annotated nominal-SRL annotations, as well as to other QA-driven annotations. In addition, we train a baseline QANom parser for identifying nominalizations and labeling their arguments with question-answer pairs. Finally, we demonstrate the extrinsic utility of our annotations for downstream tasks using both indirect supervision and zero-shot settings.

2019

pdf bib
ABSApp: A Portable Weakly-Supervised Aspect-Based Sentiment Extraction System
Oren Pereg | Daniel Korat | Moshe Wasserblat | Jonathan Mamou | Ido Dagan
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations

We present ABSApp, a portable system for weakly-supervised aspect-based sentiment ex- traction. The system is interpretable and user friendly and does not require labeled training data, hence can be rapidly and cost-effectively used across different domains in applied setups. The system flow includes three stages: First, it generates domain-specific aspect and opinion lexicons based on an unlabeled dataset; second, it enables the user to view and edit those lexicons (weak supervision); and finally, it enables the user to select an unlabeled target dataset from the same domain, classify it, and generate an aspect-based sentiment report. ABSApp has been successfully used in a number of real-life use cases, among them movie review analysis and convention impact analysis.

pdf bib
Multi-Context Term Embeddings: the Use Case of Corpus-based Term Set Expansion
Jonathan Mamou | Oren Pereg | Moshe Wasserblat | Ido Dagan
Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for NLP

In this paper, we present a novel algorithm that combines multi-context term embeddings using a neural classifier and we test this approach on the use case of corpus-based term set expansion. In addition, we present a novel and unique dataset for intrinsic evaluation of corpus-based term set expansion algorithms. We show that, over this dataset, our algorithm provides up to 5 mean average precision points over the best baseline.

2018

pdf bib
SetExpander: End-to-end Term Set Expansion Based on Multi-Context Term Embeddings
Jonathan Mamou | Oren Pereg | Moshe Wasserblat | Ido Dagan | Yoav Goldberg | Alon Eirew | Yael Green | Shira Guskin | Peter Izsak | Daniel Korat
Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations

We present SetExpander, a corpus-based system for expanding a seed set of terms into a more complete set of terms that belong to the same semantic class. SetExpander implements an iterative end-to end workflow for term set expansion. It enables users to easily select a seed set of terms, expand it, view the expanded set, validate it, re-expand the validated set and store it, thus simplifying the extraction of domain-specific fine-grained semantic classes. SetExpander has been used for solving real-life use cases including integration in an automated recruitment system and an issues and defects resolution system. A video demo of SetExpander is available at https://drive.google.com/open?id=1e545bB87Autsch36DjnJHmq3HWfSd1Rv .

pdf bib
Term Set Expansion based NLP Architect by Intel AI Lab
Jonathan Mamou | Oren Pereg | Moshe Wasserblat | Alon Eirew | Yael Green | Shira Guskin | Peter Izsak | Daniel Korat
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

We present SetExpander, a corpus-based system for expanding a seed set of terms into a more complete set of terms that belong to the same semantic class. SetExpander implements an iterative end-to-end workflow. It enables users to easily select a seed set of terms, expand it, view the expanded set, validate it, re-expand the validated set and store it, thus simplifying the extraction of domain-specific fine-grained semantic classes. SetExpander has been used successfully in real-life use cases including integration into an automated recruitment system and an issues and defects resolution system.

2009

pdf bib
Fast decoding for open vocabulary spoken term detection
Bhuvana Ramabhadran | Abhinav Sethy | Jonathan Mamou | Brian Kingsbury | Upendra Chaudhari
Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Companion Volume: Short Papers