Juhyeong Park


2024

pdf bib
SEED: Semantic Knowledge Transfer for Language Model Adaptation to Materials Science
Yeachan Kim | Jun-Hyung Park | SungHo Kim | Juhyeong Park | Sangyun Kim | SangKeun Lee
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

Materials science is an interdisciplinary field focused on studying and discovering materials around us. However, due to the vast space of materials, datasets in this field are typically scarce and have limited coverage. This inherent limitation makes current adaptation methods less effective when adapting pre-trained language models (PLMs) to materials science, as these methods rely heavily on the frequency information from limited downstream datasets. In this paper, we propose Semantic Knowledge Transfer (SEED), a novel vocabulary expansion method to adapt the pre-trained language models for materials science. The core strategy of SEED is to transfer the materials knowledge of lightweight embeddings into the PLMs. To this end, we introduce knowledge bridge networks, which learn to transfer the latent knowledge of the materials embeddings into ones compatible with PLMs. By expanding the embedding layer of PLMs with these transformed embeddings, PLMs can comprehensively understand the complex terminology associated with materials science. We conduct extensive experiments across a broad range of materials-related benchmarks. Comprehensive evaluation results convincingly demonstrate that SEED mitigates the mentioned limitations of previous adaptation methods, showcasing the efficacy of transferring embedding knowledge into PLMs.

pdf bib
KOMBO: Korean Character Representations Based on the Combination Rules of Subcharacters
SungHo Kim | Juhyeong Park | Yeachan Kim | SangKeun Lee
Findings of the Association for Computational Linguistics: ACL 2024

The Korean writing system, Hangeul, has a unique character representation rigidly following the invention principles recorded in Hunminjeongeum. However, existing pre-trained language models (PLMs) for Korean have overlooked these principles. In this paper, we introduce a novel framework for Korean PLMs called KOMBO, which firstly brings the invention principles of Hangeul to represent character. Our proposed method, KOMBO, exhibits notable experimental proficiency across diverse NLP tasks. In particular, our method outperforms the state-of-the-art Korean PLM by an average of 2.11% in five Korean natural language understanding tasks. Furthermore, extensive experiments demonstrate that our proposed method is suitable for comprehending the linguistic features of the Korean language. Consequently, we shed light on the superiority of using subcharacters over the typical subword-based approach for Korean PLMs. Our code is available at: https://github.com/SungHo3268/KOMBO.

2023

pdf bib
Improving Bias Mitigation through Bias Experts in Natural Language Understanding
Eojin Jeon | Mingyu Lee | Juhyeong Park | Yeachan Kim | Wing-Lam Mok | SangKeun Lee
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Biases in the dataset often enable the model to achieve high performance on in-distribution data, while poorly performing on out-of-distribution data. To mitigate the detrimental effect of the bias on the networks, previous works have proposed debiasing methods that down-weight the biased examples identified by an auxiliary model, which is trained with explicit bias labels. However, finding a type of bias in datasets is a costly process. Therefore, recent studies have attempted to make the auxiliary model biased without the guidance (or annotation) of bias labels, by constraining the model’s training environment or the capability of the model itself. Despite the promising debiasing results of recent works, the multi-class learning objective, which has been naively used to train the auxiliary model, may harm the bias mitigation effect due to its regularization effect and competitive nature across classes. As an alternative, we propose a new debiasing framework that introduces binary classifiers between the auxiliary model and the main model, coined bias experts. Specifically, each bias expert is trained on a binary classification task derived from the multi-class classification task via the One-vs-Rest approach. Experimental results demonstrate that our proposed strategy improves the bias identification ability of the auxiliary model. Consequently, our debiased model consistently outperforms the state-of-the-art on various challenge datasets.