Multi-turn intent classification is notably challenging due to the complexity and evolving nature of conversational contexts. This paper introduces LARA, a Linguistic-Adaptive Retrieval-Augmentation framework to enhance accuracy in multi-turn classification tasks across six languages, accommodating numerous intents in chatbot interactions. LARA combines a fine-tuned smaller model with a retrieval-augmented mechanism, integrated within the architecture of LLMs. The integration allows LARA to dynamically utilize past dialogues and relevant intents, thereby improving the understanding of the context. Furthermore, our adaptive retrieval techniques bolster the cross-lingual capabilities of LLMs without extensive retraining and fine-tuning. Comprehensive experiments demonstrate that LARA achieves state-of-the-art performance on multi-turn intent classification tasks, enhancing the average accuracy by 3.67% from state-of-the-art single-turn intent classifiers.
The automatic scoring of summaries is important as it guides the development of summarizers. Scoring is also complex, as it involves multiple aspects such as the fluency, grammar, and even textual entailment with the source text. However, summary scoring has not been considered as a machine learning task to study its accuracy and robustness. In this study, we place automatic scoring in the context of regression machine learning tasks and perform evasion attacks to explore its robustness. Attack systems predict a non-summary string from each input, and these non-summary strings achieve competitive scores with good summarizers on the most popular metrics: ROUGE, METEOR, and BERTScore. Attack systems also “outperform” state-of-the-art summarization methods on ROUGE-1 and ROUGE-L, and score the second-highest on METEOR. Furthermore, a BERTScore backdoor is observed: a simple trigger can score higher than any automatic summarization method. The evasion attacks in this work indicate the low robustness of current scoring systems at the system level. We hope that our highlighting of these proposed attack will facilitate the development of summary scores.
Academic writing should be concise as concise sentences better keep the readers’ attention and convey meaning clearly. Writing concisely is challenging, for writers often struggle to revise their drafts. We introduce and formulate revising for concision as a natural language processing task at the sentence level. Revising for concision requires algorithms to use only necessary words to rewrite a sentence while preserving its meaning. The revised sentence should be evaluated according to its word choice, sentence structure, and organization. The revised sentence also needs to fulfil semantic retention and syntactic soundness. To aide these efforts, we curate and make available a benchmark parallel dataset that can depict revising for concision. The dataset contains 536 pairs of sentences before and after revising, and all pairs are collected from college writing centres. We also present and evaluate the approaches to this problem, which may assist researchers in this area.
BERT is inefficient for sentence-pair tasks such as clustering or semantic search as it needs to evaluate combinatorially many sentence pairs which is very time-consuming. Sentence BERT (SBERT) attempted to solve this challenge by learning semantically meaningful representations of single sentences, such that similarity comparison can be easily accessed. However, SBERT is trained on corpus with high-quality labeled sentence pairs, which limits its application to tasks where labeled data is extremely scarce. In this paper, we propose a lightweight extension on top of BERT and a novel self-supervised learning objective based on mutual information maximization strategies to derive meaningful sentence embeddings in an unsupervised manner. Unlike SBERT, our method is not restricted by the availability of labeled data, such that it can be applied on different domain-specific corpus. Experimental results show that the proposed method significantly outperforms other unsupervised sentence embedding baselines on common semantic textual similarity (STS) tasks and downstream supervised tasks. It also outperforms SBERT in a setting where in-domain labeled data is not available, and achieves performance competitive with supervised methods on various tasks.
Knowing the location of a social media user and their posts is important for various purposes, such as the recommendation of location-based items/services, and locality detection of crisis/disasters. This paper describes our submission to the shared task “Geolocation Prediction in Twitter” of the 2nd Workshop on Noisy User-generated Text. In this shared task, we propose an algorithm to predict the location of Twitter users and tweets using a multinomial Naive Bayes classifier trained on Location Indicative Words and various textual features (such as city/country names, #hashtags and @mentions). We compared our approach against various baselines based on Location Indicative Words, city/country names, #hashtags and @mentions as individual feature sets, and experimental results show that our approach outperforms these baselines in terms of classification accuracy, mean and median error distance.