2024
pdf
bib
abs
Translate your Own: a Post-Editing Experiment in the NLP domain
Rachel Bawden
|
Ziqian Peng
|
Maud Bénard
|
Éric Clergerie
|
Raphaël Esamotunu
|
Mathilde Huguin
|
Natalie Kübler
|
Alexandra Mestivier
|
Mona Michelot
|
Laurent Romary
|
Lichao Zhu
|
François Yvon
Proceedings of the 25th Annual Conference of the European Association for Machine Translation (Volume 1)
The improvements in neural machine translation make translation and post-editing pipelines ever more effective for a wider range of applications. In this paper, we evaluate the effectiveness of such a pipeline for the translation of scientific documents (limited here to article abstracts). Using a dedicated interface, we collect, then analyse the post-edits of approximately 350 abstracts (English→French) in the Natural Language Processing domain for two groups of post-editors: domain experts (academics encouraged to post-edit their own articles) on the one hand and trained translators on the other. Our results confirm that such pipelines can be effective, at least for high-resource language pairs. They also highlight the difference in the post-editing strategy of the two subgroups. Finally, they suggest that working on term translation is the most pressing issue to improve fully automatic translations, but that in a post-editing setup, other error types can be equally annoying for post-editors.
pdf
bib
abs
Enhancing Translation Quality: A Comparative Study of Fine-Tuning and Prompt Engineering in Dialog-Oriented Machine Translation Systems. Insights from the MULTITAN-GML Team
Lichao Zhu
|
Maria Zimina
|
Behnoosh Namdarzadeh
|
Nicolas Ballier
|
Jean-Baptiste Yunès
Proceedings of the Ninth Conference on Machine Translation
For this shared task, we have used several machine translation engines to produce translations (en ⇔ fr) by fine-tuning a dialog-oriented NMT engine and having NMT baseline translations post-edited with prompt engineering. Our objectives are to test the effectiveness of a fine-tuning strategy with help of a robust NMT model, to draw out a from-translation-to-post-editing pipeline, and to evaluate the strong and weak points of NMT systems.
2023
pdf
bib
abs
MaTOS: Traduction automatique pour la science ouverte
Maud Bénard
|
Alexandra Mestivier
|
Natalie Kubler
|
Lichao Zhu
|
Rachel Bawden
|
Eric De La Clergerie
|
Laurent Romary
|
Mathilde Huguin
|
Jean-François Nominé
|
Ziqian Peng
|
François Yvon
Actes de CORIA-TALN 2023. Actes de l'atelier "Analyse et Recherche de Textes Scientifiques" (ARTS)@TALN 2023
Cette contribution présente le projet MaTOS (Machine Translation for Open Science), qui vise à développer de nouvelles méthodes pour la traduction automatique (TA) intégrale de documents scientifiques entre le français et l’anglais, ainsi que des métriques automatiques pour évaluer la qualité des traductions produites. Pour ce faire, MaTOS s’intéresse (a) au recueil de ressources ouvertes pour la TA spécialisée; (b) à la description des marqueurs de cohérence textuelle pour les articles scientifiques; (c) au développement de nouvelles méthodes de traitement multilingue pour les documents; (d) aux métriques mesurant les progrès de la traduction de documents complets.
pdf
bib
abs
Investigating Techniques for a Deeper Understanding of Neural Machine Translation (NMT) Systems through Data Filtering and Fine-tuning Strategies
Lichao Zhu
|
Maria Zimina
|
Maud Bénard
|
Behnoosh Namdar
|
Nicolas Ballier
|
Guillaume Wisniewski
|
Jean-Baptiste Yunès
Proceedings of the Eighth Conference on Machine Translation
In the context of this biomedical shared task, we have implemented data filters to enhance the selection of relevant training data for fine- tuning from the available training data sources. Specifically, we have employed textometric analysis to detect repetitive segments within the test set, which we have then used for re- fining the training data used to fine-tune the mBart-50 baseline model. Through this approach, we aim to achieve several objectives: developing a practical fine-tuning strategy for training biomedical in-domain fr<>en models, defining criteria for filtering in-domain training data, and comparing model predictions, fine-tuning data in accordance with the test set to gain a deeper insight into the functioning of Neural Machine Translation (NMT) systems.
pdf
bib
abs
The MAKE-NMTVIZ System Description for the WMT23 Literary Task
Fabien Lopez
|
Gabriela González
|
Damien Hansen
|
Mariam Nakhle
|
Behnoosh Namdarzadeh
|
Nicolas Ballier
|
Marco Dinarelli
|
Emmanuelle Esperança-Rodier
|
Sui He
|
Sadaf Mohseni
|
Caroline Rossi
|
Didier Schwab
|
Jun Yang
|
Jean-Baptiste Yunès
|
Lichao Zhu
Proceedings of the Eighth Conference on Machine Translation
This paper describes the MAKE-NMTVIZ Systems trained for the WMT 2023 Literary task. As a primary submission, we used Train, Valid1, test1 as part of the GuoFeng corpus (Wang et al., 2023) to fine-tune the mBART50 model with Chinese-English data. We followed very similar training parameters to (Lee et al. 2022) when fine-tuning mBART50. We trained for 3 epochs, using gelu as an activation function, with a learning rate of 0.05, dropout of 0.1 and a batch size of 16. We decoded using a beam search of size 5. For our contrastive1 submission, we implemented a fine-tuned concatenation transformer (Lupo et al., 2023). The training was developed in two steps: (i) a sentence-level transformer was implemented for 10 epochs trained using general, test1, and valid1 data (more details in contrastive2 system); (ii) second, we fine-tuned at document-level using 3-sentence concatenation for 4 epochs using train, test2, and valid2 data. During the fine-tuning, we used ReLU as an activation function, with an inverse square root learning rate, dropout of 0.1, and a batch size of 64. We decoded using a beam search of size. Four our contrastive2 and last submission, we implemented a sentence-level transformer model (Vaswani et al., 2017). The model was trained with general data for 10 epochs using general-purpose, test1, and valid 1 data. The training parameters were an inverse square root scheduled learning rate, a dropout of 0.1, and a batch size of 64. We decoded using a beam search of size 4. We then compared the three translation outputs from an interdisciplinary perspective, investigating some of the effects of sentence- vs document-based training. Computer scientists, translators and corpus linguists discussed the linguistic remaining issues for this discourse-level literary translation.
pdf
bib
abs
Fine-tuning MBART-50 with French and Farsi data to improve the translation of Farsi dislocations into English and French
Behnoosh Namdarzadeh
|
Sadaf Mohseni
|
Lichao Zhu
|
Guillaume Wisniewski
|
Nicolas Ballier
Proceedings of Machine Translation Summit XIX, Vol. 2: Users Track
In this paper, we discuss the improvements brought by the fine-tuning of mBART50 for the translation of a specific Farsi dataset of dislocations. Given our BLEU scores, our evaluation is mostly qualitative: we assess the improvements of our fine-tuning in the translations into French of our test dataset of Farsi. We describe the fine-tuning procedure and discuss the quality of the results in the translations from Farsi. We assess the sentences in the French translations that contain English tokens and for the English translations, we examine the ability of the fine- tuned system to translate Farsi dislocations into English without replicating the dislocated item as a double subject. We scrutinized the Farsi training data used to train for mBART50 (Tang et al., 2021). We fine-tuned mBART50 with samples from an in-house French-Farsi aligned translation of a short story. In spite of the scarcity of available resources, we found that fine- tuning with aligned French-Farsi data dramatically improved the grammatical well-formedness of the predictions for French, even if serious semantic issues remained. We replicated the experiment with the English translation of the same Farsi short story for a Farsi-English fine-tuning and found out that similar semantic inadequacies cropped up, and that some translations were worse than our mBART50 baseline. We showcased the fine-tuning of mBART50 with supplementary data and discussed the asymmetry of the situation, adding little data in the fine-tuning is sufficient to improve morpho-syntax for one language pair but seems to degrade translation to English.
2022
pdf
bib
Toward a Test Set of Dislocations in Persian for Neural Machine Translation
Behnoosh Namdarzadeh
|
Nicolas Ballier
|
Lichao Zhu
|
Guillaume Wisniewski
|
Jean-Baptiste Yunès
Proceedings of the Third International Workshop on NLP Solutions for Under Resourced Languages (NSURL 2022) co-located with ICNLSP 2022
pdf
bib
abs
Analyzing Gender Translation Errors to Identify Information Flows between the Encoder and Decoder of a NMT System
Guillaume Wisniewski
|
Lichao Zhu
|
Nicolas Ballier
|
François Yvon
Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP
Multiple studies have shown that existing NMT systems demonstrate some kind of “gender bias”. As a result, MT output appears to err more often for feminine forms and to amplify social gender misrepresentations, which is potentially harmful to users and practioners of these technologies. This paper continues this line of investigations and reports results obtained with a new test set in strictly controlled conditions. This setting allows us to better understand the multiple inner mechanisms that are causing these biases, which include the linguistic expressions of gender, the unbalanced distribution of masculine and feminine forms in the language, the modelling of morphological variation and the training process dynamics. To counterbalance these effects, we formulate several proposals and notably show that modifying the training loss can effectively mitigate such biases.
pdf
bib
Biais de genre dans un système de traduction automatique neuronale : une étude des mécanismes de transfert cross-langue [Gender bias in a neural machine translation system: a study of crosslingual transfer mechanisms]
Guillaume Wisniewski
|
Lichao Zhu
|
Nicolas Ballier
|
François Yvon
Traitement Automatique des Langues, Volume 63, Numéro 1 : Varia [Varia]
pdf
bib
abs
Flux d’informations dans les systèmes encodeur-décodeur. Application à l’explication des biais de genre dans les systèmes de traduction automatique. (Information flow in encoder-decoder systems applied to the explanation of gender bias in machine translation systems)
Lichao Zhu
|
Guillaume Wisniewski
|
Nicolas Ballier
|
François Yvon
Actes de la 29e Conférence sur le Traitement Automatique des Langues Naturelles. Atelier TAL et Humanités Numériques (TAL-HN)
Ce travail présente deux séries d’expériences visant à identifier les flux d’information dans les systèmes de traduction neuronaux. La première série s’appuie sur une comparaison des décisions d’un modèle de langue et d’un modèle de traduction pour mettre en évidence le flux d’information provenant de la source. La seconde série met en évidence l’impact de ces flux sur l’apprentissage du système dans le cas particulier du transfert de l’information de genre.
pdf
bib
abs
The SPECTRANS System Description for the WMT22 Biomedical Task
Nicolas Ballier
|
Jean-baptiste Yunès
|
Guillaume Wisniewski
|
Lichao Zhu
|
Maria Zimina
Proceedings of the Seventh Conference on Machine Translation (WMT)
This paper describes the SPECTRANS submission for the WMT 2022 biomedical shared task. We present the results of our experiments using the training corpora and the JoeyNMT (Kreutzer et al., 2019) and SYSTRAN Pure Neural Server/ Advanced Model Studio toolkits for the language directions English to French and French to English. We compare the pre- dictions of the different toolkits. We also use JoeyNMT to fine-tune the model with a selection of texts from WMT, Khresmoi and UFAL data sets. We report our results and assess the respective merits of the different translated texts.
2021
pdf
bib
abs
Screening Gender Transfer in Neural Machine Translation
Guillaume Wisniewski
|
Lichao Zhu
|
Nicolas Bailler
|
François Yvon
Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP
This paper aims at identifying the information flow in state-of-the-art machine translation systems, taking as example the transfer of gender when translating from French into English. Using a controlled set of examples, we experiment several ways to investigate how gender information circulates in a encoder-decoder architecture considering both probing techniques as well as interventions on the internal representations used in the MT system. Our results show that gender information can be found in all token representations built by the encoder and the decoder and lead us to conclude that there are multiple pathways for gender transfer.
pdf
bib
abs
The SPECTRANS System Description for the WMT21 Terminology Task
Nicolas Ballier
|
Dahn Cho
|
Bilal Faye
|
Zong-You Ke
|
Hanna Martikainen
|
Mojca Pecman
|
Guillaume Wisniewski
|
Jean-Baptiste Yunès
|
Lichao Zhu
|
Maria Zimina-Poirot
Proceedings of the Sixth Conference on Machine Translation
This paper discusses the WMT 2021 terminology shared task from a “meta” perspective. We present the results of our experiments using the terminology dataset and the OpenNMT (Klein et al., 2017) and JoeyNMT (Kreutzer et al., 2019) toolkits for the language direction English to French. Our experiment 1 compares the predictions of the two toolkits. Experiment 2 uses OpenNMT to fine-tune the model. We report our results for the task with the evaluation script but mostly discuss the linguistic properties of the terminology dataset provided for the task. We provide evidence of the importance of text genres across scores, having replicated the evaluation scripts.
pdf
bib
abs
Biais de genre dans un système de traduction automatiqueneuronale : une étude préliminaire (Gender Bias in Neural Translation : a preliminary study )
Guillaume Wisniewski
|
Lichao Zhu
|
Nicolas Ballier
|
François Yvon
Actes de la 28e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 1 : conférence principale
Cet article présente les premiers résultats d’une étude en cours sur les biais de genre dans les corpus d’entraînements et dans les systèmes de traduction neuronale. Nous étudions en particulier un corpus minimal et contrôlé pour mesurer l’intensité de ces biais dans les deux directions anglais-français et français-anglais ; ce cadre contrôlé nous permet également d’analyser les représentations internes manipulées par le système pour réaliser ses prédictions lexicales, ainsi que de formuler des hypothèses sur la manière dont ce biais se distribue dans les représentations du système.