Lyuhao Chen


2024

pdf bib
Revisiting Automated Evaluation for Long-form Table Question Answering
Yuqi Wang | Lyuhao Chen | Songcheng Cai | Zhijian Xu | Yilun Zhao
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

In the era of data-driven decision-making, Long-Form Table Question Answering (LFTQA) is essential for integrating structured data with complex reasoning. Despite recent advancements in Large Language Models (LLMs) for LFTQA, evaluating their effectiveness remains a significant challenge. We introduce LFTQA-Eval, a meta-evaluation dataset comprising 2,988 human-annotated examples, to rigorously assess the efficacy of current automated metrics in assessing LLM-based LFTQA systems, with a focus on faithfulness and comprehensiveness. Our findings reveal that existing automatic metrics poorly correlate with human judgments and fail to consistently differentiate between factually accurate responses and those that are coherent but factually incorrect. Additionally, our in-depth examination of the limitations associated with automated evaluation methods provides essential insights for the improvement of LFTQA automated evaluation.

pdf bib
OpenT2T: An Open-Source Toolkit for Table-to-Text Generation
Haowei Zhang | Shengyun Si | Yilun Zhao | Lujing Xie | Zhijian Xu | Lyuhao Chen | Linyong Nan | Pengcheng Wang | Xiangru Tang | Arman Cohan
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Table data is pervasive in various industries, and its comprehension and manipulation demand significant time and effort for users seeking to extract relevant information. Consequently, an increasing number of studies have been directed towards table-to-text generation tasks. However, most existing methods are benchmarked solely on a limited number of datasets with varying configurations, leading to a lack of unified, standardized, fair, and comprehensive comparison between methods. This paper presents OpenT2T, the first open-source toolkit for table-to-text generation, designed to reproduce existing large language models (LLMs) for performance comparison and expedite the development of new models.We have implemented and compared a wide range of LLMs under zero- and few-shot settings on 9 table-to-text generation datasets, covering data insight generation, table summarization, and free-form table question answering. Additionally, we maintain a public leaderboard to provide insights for future work into how to choose appropriate table-to-text generation systems for real-world scenarios.

pdf bib
TaPERA: Enhancing Faithfulness and Interpretability in Long-Form Table QA by Content Planning and Execution-based Reasoning
Yilun Zhao | Lyuhao Chen | Arman Cohan | Chen Zhao
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Long-form Table Question Answering (LFTQA) requires systems to generate paragraph long and complex answers to questions over tabular data. While Large language models based systems have made significant progress, it often hallucinates, especially when the task involves complex reasoning over tables. To tackle this issue, we propose a new LLM-based framework, TaPERA, for LFTQA tasks. Our framework uses a modular approach that decomposes the whole process into three sub-modules: 1) QA-based Content Planner that iteratively decomposes the input question into sub-questions; 2) Execution-based Table Reasoner that produces executable Python program for each sub-question; and 3) Answer Generator that generates long-form answer grounded on the program output. Human evaluation results on the FeTaQA and QTSumm datasets indicate that our framework significantly improves strong baselines on both accuracy and truthfulness, as our modular framework is better at table reasoning, and the long-form answer is always consistent with the program output. Our modular design further provides transparency as users are able to interact with our framework by manually changing the content plans.

pdf bib
DocMath-Eval: Evaluating Math Reasoning Capabilities of LLMs in Understanding Long and Specialized Documents
Yilun Zhao | Yitao Long | Hongjun Liu | Ryo Kamoi | Linyong Nan | Lyuhao Chen | Yixin Liu | Xiangru Tang | Rui Zhang | Arman Cohan
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent LLMs have demonstrated remarkable performance in solving exam-like math word problems. However, the degree to which these numerical reasoning skills are effective in real-world scenarios, particularly in expert domains, is still largely unexplored. This paper introduces DocMath-Eval, a comprehensive benchmark specifically designed to evaluate the numerical reasoning capabilities of LLMs in the context of understanding and analyzing specialized documents containing both text and tables. We conduct an extensive evaluation of 48 LLMs with Chain-of-Thought and Program-of-Thought prompting methods, aiming to comprehensively assess the capabilities and limitations of existing LLMs in DocMath-Eval. We found that even the current best-performing system (i.e., GPT-4o) still significantly lags behind human experts in solving complex numerical reasoning problems grounded in long contexts. We believe that DocMath-Eval can serve as a valuable benchmark for evaluating LLMs' capabilities in solving challenging numerical reasoning problems within expert domains.