Mahshid Hosseini


2023

pdf bib
Semi-Supervised Domain Adaptation for Emotion-Related Tasks
Mahshid Hosseini | Cornelia Caragea
Findings of the Association for Computational Linguistics: ACL 2023

Semi-supervised domain adaptation (SSDA) adopts a model trained from a label-rich source domain to a new but related domain with a few labels of target data. It is shown that, in an SSDA setting, a simple combination of domain adaptation (DA) with semi-supervised learning (SSL) techniques often fails to effectively utilize the target supervision and cannot address distribution shifts across different domains due to the training data bias toward the source-labeled samples. In this paper, inspired by the co-learning of multiple classifiers for the computer vision tasks, we propose to decompose the SSDA framework for emotion-related tasks into two subcomponents of unsupervised domain adaptation (UDA) from the source to the target domain and semi-supervised learning (SSL) in the target domain where the two models iteratively teach each other by interchanging their high confident predictions. We further propose a novel data cartography-based regularization technique for pseudo-label denoising that employs training dynamics to further hone our models’ performance. We publicly release our code.

2022

pdf bib
Calibrating Student Models for Emotion-related Tasks
Mahshid Hosseini | Cornelia Caragea
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Knowledge Distillation (KD) is an effective method to transfer knowledge from one network (a.k.a. teacher) to another (a.k.a. student). In this paper, we study KD on the emotion-related tasks from a new perspective: calibration. We further explore the impact of the mixup data augmentation technique on the distillation objective and propose to use a simple yet effective mixup method informed by training dynamics for calibrating the student models. Underpinned by the regularization impact of the mixup process by providing better training signals to the student models using training dynamics, our proposed mixup strategy gradually enhances the student model’s calibration while effectively improving its performance. We evaluate the calibration of pre-trained language models through knowledge distillation over three tasks of emotion detection, sentiment analysis, and empathy detection. By conducting extensive experiments on different datasets, with both in-domain and out-of-domain test sets, we demonstrate that student models distilled from teacher models trained using our proposed mixup method obtained the lowest Expected Calibration Errors (ECEs) and best performance on both in-domain and out-of-domain test sets.

2021

pdf bib
Distilling Knowledge for Empathy Detection
Mahshid Hosseini | Cornelia Caragea
Findings of the Association for Computational Linguistics: EMNLP 2021

Empathy is the link between self and others. Detecting and understanding empathy is a key element for improving human-machine interaction. However, annotating data for detecting empathy at a large scale is a challenging task. This paper employs multi-task training with knowledge distillation to incorporate knowledge from available resources (emotion and sentiment) to detect empathy from the natural language in different domains. This approach yields better results on an existing news-related empathy dataset compared to strong baselines. In addition, we build a new dataset for empathy prediction with fine-grained empathy direction, seeking or providing empathy, from Twitter. We release our dataset for research purposes.