Mario Fritz


2024

pdf bib
SimSCOOD: Systematic Analysis of Out-of-Distribution Generalization in Fine-tuned Source Code Models
Hossein Hajipour | Ning Yu | Cristian-Alexandru Staicu | Mario Fritz
Findings of the Association for Computational Linguistics: NAACL 2024

Large code datasets have become increasingly accessible for pre-training source code models. However, for the fine-tuning phase, obtaining representative training data that fully covers the code distribution for specific downstream tasks remains challenging due to the task-specific nature and limited labeling resources. These lead to out-of-distribution (OOD) generalization issues with unexpected model inference behaviors that have not been systematically studied yet.In this paper, we contribute the first systematic approach that simulates various OOD scenarios along different dimensions of source code data properties and study the fine-tuned model behaviors in such scenarios. We investigate the behaviors of models under different fine-tuning methodologies, including full fine-tuning and Low-Rank Adaptation (LoRA) fine-tuning methods. Our comprehensive analysis, conducted on four state-of-the-art pretrained models and applied to two code generation tasks, exposes multiple failure modes attributed to OOD generalization issues.

pdf bib
PoLLMgraph: Unraveling Hallucinations in Large Language Models via State Transition Dynamics
Derui Zhu | Dingfan Chen | Qing Li | Zongxiong Chen | Lei Ma | Jens Grossklags | Mario Fritz
Findings of the Association for Computational Linguistics: NAACL 2024

Despite tremendous advancements in large language models (LLMs) over recent years, a notably urgent challenge for their practical deployment is the phenomenon of "hallucination”, where the model fabricates facts and produces non-factual statements. In response, we propose PoLLMgraph—a Polygraph for LLMs—as an effective model-based white-box detection and forecasting approach. PoLLMgraph distinctly differs from the large body of existing research that concentrates on addressing such challenges through black-box evaluations. In particular, we demonstrate that hallucination can be effectively detected by analyzing the LLM’s internal state transition dynamics during generation via tractable probabilistic models. Experimental results on various open-source LLMs confirm the efficacy of PoLLMgraph, outperforming state-of-the-art methods by a considerable margin, evidenced by over 20% improvement in AUC-ROC on common benchmarking datasets like TruthfulQA. Our work paves a new way for model-based white-box analysis of LLMs, motivating the research community to further explore, understand, and refine the intricate dynamics of LLM behaviors.