Mario Fritz
2024
LLM Task Interference: An Initial Study on the Impact of Task-Switch in Conversational History
Akash Gupta
|
Ivaxi Sheth
|
Vyas Raina
|
Mark Gales
|
Mario Fritz
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
With the recent emergence of powerful instruction-tuned large language models (LLMs), various helpful conversational Artificial Intelligence (AI) systems have been deployed across many applications. When prompted by users, these AI systems successfully perform a wide range of tasks as part of a conversation. To provide some sort of memory and context, such approaches typically condition their output on the entire conversational history. Although this sensitivity to the conversational history can often lead to improved performance on subsequent tasks, we find that performance can in fact also be negatively impacted, if there is a _task-switch_. To the best of our knowledge, our work makes the first attempt to formalize the study of such vulnerabilities and interference of tasks in conversational LLMs caused by task-switches in the conversational history. Our experiments across 5 datasets with 15 task switches using popular LLMs reveal that many of the task-switches can lead to significant performance degradation.
SimSCOOD: Systematic Analysis of Out-of-Distribution Generalization in Fine-tuned Source Code Models
Hossein Hajipour
|
Ning Yu
|
Cristian-Alexandru Staicu
|
Mario Fritz
Findings of the Association for Computational Linguistics: NAACL 2024
Large code datasets have become increasingly accessible for pre-training source code models. However, for the fine-tuning phase, obtaining representative training data that fully covers the code distribution for specific downstream tasks remains challenging due to the task-specific nature and limited labeling resources. These lead to out-of-distribution (OOD) generalization issues with unexpected model inference behaviors that have not been systematically studied yet.In this paper, we contribute the first systematic approach that simulates various OOD scenarios along different dimensions of source code data properties and study the fine-tuned model behaviors in such scenarios. We investigate the behaviors of models under different fine-tuning methodologies, including full fine-tuning and Low-Rank Adaptation (LoRA) fine-tuning methods. Our comprehensive analysis, conducted on four state-of-the-art pretrained models and applied to two code generation tasks, exposes multiple failure modes attributed to OOD generalization issues.
PoLLMgraph: Unraveling Hallucinations in Large Language Models via State Transition Dynamics
Derui Zhu
|
Dingfan Chen
|
Qing Li
|
Zongxiong Chen
|
Lei Ma
|
Jens Grossklags
|
Mario Fritz
Findings of the Association for Computational Linguistics: NAACL 2024
Search
Fix data
Co-authors
- Dingfan Chen 1
- Zongxiong Chen 1
- Mark Gales 1
- Jens Grossklags 1
- Akash Gupta 1
- show all...