Maziar Sanjabi


2024

pdf bib
Distilling Knowledge from Text-to-Image Generative Models Improves Visio-Linguistic Reasoning in CLIP
Samyadeep Basu | Shell Xu Hu | Maziar Sanjabi | Daniela Massiceti | Soheil Feizi
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Image-text contrastive models like CLIP have wide applications in zero-shot classification, image-text retrieval, and transfer learning. However, they often struggle on compositional visio-linguistic tasks (e.g., attribute-binding or object-relationships) where their performance is no better than random chance. To address this, we introduce SDS-CLIP, a lightweight and sample-efficient distillation method to enhance CLIP’s compositional visio-linguistic reasoning. Our approach fine-tunes CLIP using a distillation objective borrowed from large text-to-image generative models like Stable-Diffusion, which are known for their strong visio-linguistic reasoning abilities. On the challenging Winoground benchmark, SDS-CLIP improves the visio-linguistic performance of various CLIP models by up to 7%, while on the ARO dataset, it boosts performance by up to 3%. This work underscores the potential of well-designed distillation objectives from generative models to enhance contrastive image-text models with improved visio-linguistic reasoning capabilities.

pdf bib
RESPROMPT: Residual Connection Prompting Advances Multi-Step Reasoning in Large Language Models
Song Jiang | Zahra Shakeri | Aaron Chan | Maziar Sanjabi | Hamed Firooz | Yinglong Xia | Bugra Akyildiz | Yizhou Sun | Jinchao Li | Qifan Wang | Asli Celikyilmaz
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Chain-of-thought (CoT) has impressively unlocked the reasoning potential of large language models (LLMs). Yet, it falls short when tackling problems that require multiple reasoning steps. This limitation arises from the complex nature of multi-step reasoning processes: later stages often depend not only on the immediately preceding step, but also on the results from several steps earlier. Such complexities indicate the reasoning process is naturally a graph. The almost linear structure of CoT, however, struggles to capture this complex reasoning graph. To address this challenge, we propose Residual Connection Prompting (ResPrompt), a new prompting strategy that advances multi-step reasoning in LLMs. The core of our idea is to reconstruct the reasoning graph within prompts. We achieve this by integrating necessary connections–links present in reasoning graph but missing in the linear CoT flow–into the prompts. Termed “residual connections”, these links can transform linear CoT into the complex reasoning graphs that multi-step problems entail. On benchmarks across math, sequential, and commonsense domains, ResPrompt demonstrates clear improvements in multi-step reasoning compared with CoT. Through extensive ablation studies and analyses, we pinpoint how to effectively build residual connections and also identify situations where it might be unnecessary.

2023

pdf bib
COFFEE: Counterfactual Fairness for Personalized Text Generation in Explainable Recommendation
Nan Wang | Qifan Wang | Yi-Chia Wang | Maziar Sanjabi | Jingzhou Liu | Hamed Firooz | Hongning Wang | Shaoliang Nie
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

As language models become increasingly integrated into our digital lives, Personalized Text Generation (PTG) has emerged as a pivotal component with a wide range of applications. However, the bias inherent in user written text, often used for PTG model training, can inadvertently associate different levels of linguistic quality with users’ protected attributes. The model can inherit the bias and perpetuate inequality in generating text w.r.t. users’ protected attributes, leading to unfair treatment when serving users. In this work, we investigate fairness of PTG in the context of personalized explanation generation for recommendations. We first discuss the biases in generated explanations and their fairness implications. To promote fairness, we introduce a general framework to achieve measure-specific counterfactual fairness in explanation generation. Extensive experiments and human evaluations demonstrate the effectiveness of our method.

2022

pdf bib
Detection, Disambiguation, Re-ranking: Autoregressive Entity Linking as a Multi-Task Problem
Khalil Mrini | Shaoliang Nie | Jiatao Gu | Sinong Wang | Maziar Sanjabi | Hamed Firooz
Findings of the Association for Computational Linguistics: ACL 2022

We propose an autoregressive entity linking model, that is trained with two auxiliary tasks, and learns to re-rank generated samples at inference time. Our proposed novelties address two weaknesses in the literature. First, a recent method proposes to learn mention detection and then entity candidate selection, but relies on predefined sets of candidates. We use encoder-decoder autoregressive entity linking in order to bypass this need, and propose to train mention detection as an auxiliary task instead. Second, previous work suggests that re-ranking could help correct prediction errors. We add a new, auxiliary task, match prediction, to learn re-ranking. Without the use of a knowledge base or candidate sets, our model sets a new state of the art in two benchmark datasets of entity linking: COMETA in the biomedical domain, and AIDA-CoNLL in the news domain. We show through ablation studies that each of the two auxiliary tasks increases performance, and that re-ranking is an important factor to the increase. Finally, our low-resource experimental results suggest that performance on the main task benefits from the knowledge learned by the auxiliary tasks, and not just from the additional training data.

pdf bib
ER-Test: Evaluating Explanation Regularization Methods for Language Models
Brihi Joshi | Aaron Chan | Ziyi Liu | Shaoliang Nie | Maziar Sanjabi | Hamed Firooz | Xiang Ren
Findings of the Association for Computational Linguistics: EMNLP 2022

By explaining how humans would solve a given task, human rationales can provide strong learning signal for neural language models (NLMs). Explanation regularization (ER) aims to improve NLM generalization by pushing the NLM’s machine rationales (Which input tokens did the NLM focus on?) to align with human rationales (Which input tokens would humans focus on). Though prior works primarily study ER via in-distribution (ID) evaluation, out-of-distribution (OOD) generalization is often more critical in real-world scenarios, yet ER’s effect on OOD generalization has been underexplored.In this paper, we introduce ER-Test, a framework for evaluating ER models’ OOD generalization along three dimensions: unseen datasets, contrast set tests, and functional tests. Using ER-Test, we comprehensively analyze how ER models’ OOD generalization varies with the rationale alignment criterion (loss function), human rationale type (instance-level v/s task-level), number and choice of rationale-annotated instances, and time budget for rationale annotation. Across two tasks and six datasets, we show that ER has little impact on ID performance but yields large OOD performance gains, with the best ER criterion being task-dependent. Also, ER can improve OOD performance even with task-level or few human rationales. Finally, we find that rationale annotation is more time-efficient than label annotation for improving OOD performance. Our results with ER-Test help demonstrate ER’s utility and establish best practices for using ER effectively.

pdf bib
UNIREX: A Unified Learning Framework for Language Model Rationale Extraction
Aaron Chan | Maziar Sanjabi | Lambert Mathias | Liang Tan | Shaoliang Nie | Xiaochang Peng | Xiang Ren | Hamed Firooz
Proceedings of BigScience Episode #5 -- Workshop on Challenges & Perspectives in Creating Large Language Models

An extractive rationale explains a language model’s (LM’s) prediction on a given task instance by highlighting the text inputs that most influenced the prediction. Ideally, rationale extraction should be faithful (reflective of LM’s actual behavior) and plausible (convincing to humans), without compromising the LM’s (i.e., task model’s) task performance. Although attribution algorithms and select-predict pipelines are commonly used in rationale extraction, they both rely on certain heuristics that hinder them from satisfying all three desiderata. In light of this, we propose UNIREX, a flexible learning framework which generalizes rationale extractor optimization as follows: (1) specify architecture for a learned rationale extractor; (2) select explainability objectives (i.e., faithfulness and plausibility criteria); and (3) jointly the train task model and rationale extractor on the task using selected objectives. UNIREX enables replacing prior works’ heuristic design choices with a generic learned rationale extractor in (1) and optimizing it for all three desiderata in (2)-(3). To facilitate comparison between methods w.r.t. multiple desiderata, we introduce the Normalized Relative Gain (NRG) metric. Across five English text classification datasets, our best UNIREX configuration outperforms the strongest baselines by an average of 32.9% NRG. Plus, we find that UNIREX-trained rationale extractors’ faithfulness can even generalize to unseen datasets and tasks.

2021

pdf bib
Modality-specific Distillation
Woojeong Jin | Maziar Sanjabi | Shaoliang Nie | Liang Tan | Xiang Ren | Hamed Firooz
Proceedings of the Third Workshop on Multimodal Artificial Intelligence

Large neural networks are impractical to deploy on mobile devices due to their heavy computational cost and slow inference. Knowledge distillation (KD) is a technique to reduce the model size while retaining performance by transferring knowledge from a large “teacher” model to a smaller “student” model. However, KD on multimodal datasets such as vision-language datasets is relatively unexplored and digesting such multimodal information is challenging since different modalities present different types of information. In this paper, we propose modality-specific distillation (MSD) to effectively transfer knowledge from a teacher on multimodal datasets. Existing KD approaches can be applied to multimodal setup, but a student doesn’t have access to modality-specific predictions. Our idea aims at mimicking a teacher’s modality-specific predictions by introducing an auxiliary loss term for each modality. Because each modality has different importance for predictions, we also propose weighting approaches for the auxiliary losses; a meta-learning approach to learn the optimal weights on these loss terms. In our experiments, we demonstrate the effectiveness of our MSD and the weighting scheme and show that it achieves better performance than KD.

pdf bib
MSD: Saliency-aware Knowledge Distillation for Multimodal Understanding
Woojeong Jin | Maziar Sanjabi | Shaoliang Nie | Liang Tan | Xiang Ren | Hamed Firooz
Findings of the Association for Computational Linguistics: EMNLP 2021

To reduce a model size but retain performance, we often rely on knowledge distillation (KD) which transfers knowledge from a large “teacher” model to a smaller “student” model. However, KD on multimodal datasets such as vision-language tasks is relatively unexplored, and digesting multimodal information is challenging since different modalities present different types of information. In this paper, we perform a large-scale empirical study to investigate the importance and effects of each modality in knowledge distillation. Furthermore, we introduce a multimodal knowledge distillation framework, modality-specific distillation (MSD), to transfer knowledge from a teacher on multimodal tasks by learning the teacher’s behavior within each modality. The idea aims at mimicking a teacher’s modality-specific predictions by introducing auxiliary loss terms for each modality. Furthermore, because each modality has different saliency for predictions, we define saliency scores for each modality and investigate saliency-based weighting schemes for the auxiliary losses. We further study a weight learning approach to learn the optimal weights on these loss terms. In our empirical analysis, we examine the saliency of each modality in KD, demonstrate the effectiveness of the weighting scheme in MSD, and show that it achieves better performance than KD on four multimodal datasets.