Mihyeon Kim

Also published as: MiHyeon Kim


2024

pdf bib
IM-BERT: Enhancing Robustness of BERT through the Implicit Euler Method
MiHyeon Kim | Juhyoung Park | YoungBin Kim
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Pre-trained Language Models (PLMs) have achieved remarkable performance on diverse NLP tasks through pre-training and fine-tuning. However, fine-tuning the model with a large number of parameters on limited downstream datasets often leads to vulnerability to adversarial attacks, causing overfitting of the model on standard datasets. To address these issues, we propose IM-BERT from the perspective of a dynamic system by conceptualizing a layer of BERT as a solution of Ordinary Differential Equations (ODEs). Under the situation of initial value perturbation, we analyze the numerical stability of two main numerical ODE solvers: *the explicit and implicit Euler approaches.* Based on these analyses, we introduce a numerically robust IM-connection incorporating BERT’s layers. This strategy enhances the robustness of PLMs against adversarial attacks, even in low-resource scenarios, without introducing additional parameters or adversarial training strategies. Experimental results on the adversarial GLUE (AdvGLUE) dataset validate the robustness of IM-BERT under various conditions. Compared to the original BERT, IM-BERT exhibits a performance improvement of approximately 8.3%p on the AdvGLUE dataset. Furthermore, in low-resource scenarios, IM-BERT outperforms BERT by achieving 5.9%p higher accuracy.

2023

pdf bib
Focus on the Core: Efficient Attention via Pruned Token Compression for Document Classification
Jungmin Yun | Mihyeon Kim | Youngbin Kim
Findings of the Association for Computational Linguistics: EMNLP 2023

Transformer-based models have achieved dominant performance in numerous NLP tasks. Despite their remarkable successes, pre-trained transformers such as BERT suffer from a computationally expensive self-attention mechanism that interacts with all tokens, including the ones unfavorable to classification performance. To overcome these challenges, we propose integrating two strategies: token pruning and token combining. Token pruning eliminates less important tokens in the attention mechanism’s key and value as they pass through the layers. Additionally, we adopt fuzzy logic to handle uncertainty and alleviate potential mispruning risks arising from an imbalanced distribution of each token’s importance. Token combining, on the other hand, condenses input sequences into smaller sizes in order to further compress the model. By integrating these two approaches, we not only improve the model’s performance but also reduce its computational demands. Experiments with various datasets demonstrate superior performance compared to baseline models, especially with the best improvement over the existing BERT model, achieving +5%p in accuracy and +5.6%p in F1 score. Additionally, memory cost is reduced to 0.61x, and a speedup of 1.64x is achieved.