Mingxiao Li


2024

pdf bib
How to Leverage Demonstration Data in Alignment for Large Language Model? A Self-Imitation Learning Perspective
Teng Xiao | Mingxiao Li | Yige Yuan | Huaisheng Zhu | Chao Cui | Vasant G Honavar
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

This paper introduces a novel generalized self-imitation learning GSIL framework, which effectively and efficiently aligns large language models with offline demonstration data. We develop GSIL by deriving a surrogate objective of imitation learning with density ratio estimates, facilitating the use of self-generated data and optimizing the imitation learning objective with simple classification losses. GSIL eliminates the need for complex adversarial training in standard imitation learning, achieving lightweight and efficient fine-tuning for large language models. In addition, GSIL encompasses a family of offline losses parameterized by a general class of convex functions for density ratio estimation and enables a unified view for alignment with demonstration data. Extensive experiments show that GSIL consistently and significantly outperforms baselines in many challenging benchmarks, such as coding (HuamnEval), mathematical reasoning (GSM8K) and instruction-following benchmark (MT-Bench). Code is public available at https://github.com/tengxiao1/GSIL.

pdf bib
ERC Advanced Grant Project CALCULUS: Extending the Boundary of Machine Translation
Jingyuan Sun | Mingxiao Li | Ruben Cartuyvels | Marie-Francine Moens
Proceedings of the 25th Annual Conference of the European Association for Machine Translation (Volume 2)

The CALCULUS project, drawing on human capabilities of imagination and commonsense for natural language understanding (NLU), aims to advance machine-based NLU by integrating traditional AI concepts with contemporary machine learning techniques. It focuses on developing anticipatory event representations from both textual and visual data, connecting language structure to visual spatial organization and incorporating broad knowledge domains. Through testing these models in NLU tasks and evaluating their ability to predict untrained spatial and temporal details using real-world metrics, CALCULUS employs machine learning methods, including Bayesian techniques and neural networks, especially in data-sparse scenarios. The project’s culmination involves creating demonstrators that transform written stories into dynamic videos, showcasing the interdisciplinary expertise of the project leader in natural language processing, language and visual data analysis, information retrieval, and machine learning, all vital for the project’s achievements. In the CALCULUS project, our exploration of machine translation extends beyond the conventional text-to-text framework. We are broadening the horizons of machine translation by delving into the essence of transforming the formats of data distribution while keeping the meaning. This innovative approach involves converting information from one modality into another, transcending traditional linguistic boundaries. Our project includes novel work on translating text into images and videos, brain signals into images and videos.

pdf bib
DMON: A Simple Yet Effective Approach for Argument Structure Learning
Sun Wei | Mingxiao Li | Jingyuan Sun | Jesse Davis | Marie-Francine Moens
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Argument structure learning (ASL) entails predicting relations between arguments. Because it can structure a document to facilitate its understanding, it has been widely applied in many fields (medical, commercial, and scientific domains). Despite its broad utilization, ASL remains a challenging task because it involves examining the complex relationships between the sentences in a potentially unstructured discourse. To resolve this problem, we have developed a simple yet effective approach called Dual-tower Multi-scale cOnvolution neural Network (DMON) for the ASL task. Specifically, we organize arguments into a relationship matrix that together with the argument embeddings forms a relationship tensor and design a mechanism to capture relations with contextual arguments. Experimental results on three different-domain argument mining datasets demonstrate that our framework outperforms state-of-the-art models. We will release the code after paper acceptance.

2021

pdf bib
Modeling Coreference Relations in Visual Dialog
Mingxiao Li | Marie-Francine Moens
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Visual dialog is a vision-language task where an agent needs to answer a series of questions grounded in an image based on the understanding of the dialog history and the image. The occurrences of coreference relations in the dialog makes it a more challenging task than visual question-answering. Most previous works have focused on learning better multi-modal representations or on exploring different ways of fusing visual and language features, while the coreferences in the dialog are mainly ignored. In this paper, based on linguistic knowledge and discourse features of human dialog we propose two soft constraints that can improve the model’s ability of resolving coreferences in dialog in an unsupervised way. Experimental results on the VisDial v1.0 dataset shows that our model, which integrates two novel and linguistically inspired soft constraints in a deep transformer neural architecture, obtains new state-of-the-art performance in terms of recall at 1 and other evaluation metrics compared to current existing models and this without pretraining on other vision language datasets. Our qualitative results also demonstrate the effectiveness of the method that we propose.