Mohammad Norouzi


2023

pdf bib
Character-Aware Models Improve Visual Text Rendering
Rosanne Liu | Dan Garrette | Chitwan Saharia | William Chan | Adam Roberts | Sharan Narang | Irina Blok | Rj Mical | Mohammad Norouzi | Noah Constant
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Current image generation models struggle to reliably produce well-formed visual text. In this paper, we investigate a key contributing factor: popular text-to-image models lack character-level input features, making it much harder to predict a word’s visual makeup as a series of glyphs. To quantify this effect, we conduct a series of experiments comparing character-aware vs. character-blind text encoders. In the text-only domain, we find that character-aware models provide large gains on a novel spelling task (WikiSpell). Applying our learnings to the visual domain, we train a suite of image generation models, and show that character-aware variants outperform their character-blind counterparts across a range of novel text rendering tasks (our DrawText benchmark). Our models set a much higher state-of-the-art on visual spelling, with 30+ point accuracy gains over competitors on rare words, despite training on far fewer examples.

2022

pdf bib
Meta-Learning Fast Weight Language Models
Kevin Clark | Kelvin Guu | Ming-Wei Chang | Panupong Pasupat | Geoffrey Hinton | Mohammad Norouzi
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Dynamic evaluation of language models (LMs) adapts model parameters at test time using gradient information from previous tokens and substantially improves LM performance. However, it requires over 3x more compute than standard inference. We present Fast Weight Layers (FWLs), a neural component that provides the benefits of dynamic evaluation much more efficiently by expressing gradient updates as linear attention. A key improvement over dynamic evaluation is that FWLs can also be applied at training time, so the model learns to make good use of gradient updates. FWLs can easily be added on top of existing transformer models, require relatively little extra compute or memory to run, and significantly improve language modeling perplexity.

pdf bib
Generate, Annotate, and Learn: NLP with Synthetic Text
Xuanli He | Islam Nassar | Jamie Kiros | Gholamreza Haffari | Mohammad Norouzi
Transactions of the Association for Computational Linguistics, Volume 10

This paper studies the use of language models as a source of synthetic unlabeled text for NLP. We formulate a general framework called “generate, annotate, and learn (GAL)” to take advantage of synthetic text within knowledge distillation, self-training, and few-shot learning applications. To generate high-quality task-specific text, we either fine-tune LMs on inputs from the task of interest, or prompt large LMs with few examples. We use the best available classifier to annotate synthetic text with soft pseudo labels for knowledge distillation and self-training, and use LMs to obtain hard labels for few-shot learning. We train new supervised models on the combination of labeled and pseudo-labeled data, which results in significant gains across several applications. We investigate key components of GAL and present theoretical and empirical arguments against the use of class-conditional LMs to generate synthetic labeled text instead of unlabeled text. GAL achieves new state-of-the-art knowledge distillation results for 6-layer transformers on the GLUE leaderboard.

2020

pdf bib
Dynamic Programming Encoding for Subword Segmentation in Neural Machine Translation
Xuanli He | Gholamreza Haffari | Mohammad Norouzi
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

This paper introduces Dynamic Programming Encoding (DPE), a new segmentation algorithm for tokenizing sentences into subword units. We view the subword segmentation of output sentences as a latent variable that should be marginalized out for learning and inference. A mixed character-subword transformer is proposed, which enables exact log marginal likelihood estimation and exact MAP inference to find target segmentations with maximum posterior probability. DPE uses a lightweight mixed character-subword transformer as a means of pre-processing parallel data to segment output sentences using dynamic programming. Empirical results on machine translation suggest that DPE is effective for segmenting output sentences and can be combined with BPE dropout for stochastic segmentation of source sentences. DPE achieves an average improvement of 0.9 BLEU over BPE (Sennrich et al., 2016) and an average improvement of 0.55 BLEU over BPE dropout (Provilkov et al., 2019) on several WMT datasets including English <=> (German, Romanian, Estonian, Finnish, Hungarian).

pdf bib
Non-Autoregressive Machine Translation with Latent Alignments
Chitwan Saharia | William Chan | Saurabh Saxena | Mohammad Norouzi
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

This paper presents two strong methods, CTC and Imputer, for non-autoregressive machine translation that model latent alignments with dynamic programming. We revisit CTC for machine translation and demonstrate that a simple CTC model can achieve state-of-the-art for single-step non-autoregressive machine translation, contrary to what prior work indicates. In addition, we adapt the Imputer model for non-autoregressive machine translation and demonstrate that Imputer with just 4 generation steps can match the performance of an autoregressive Transformer baseline. Our latent alignment models are simpler than many existing non-autoregressive translation baselines; for example, we do not require target length prediction or re-scoring with an autoregressive model. On the competitive WMT’14 EnDe task, our CTC model achieves 25.7 BLEU with a single generation step, while Imputer achieves 27.5 BLEU with 2 generation steps, and 28.0 BLEU with 4 generation steps. This compares favourably to the autoregressive Transformer baseline at 27.8 BLEU.

2018

pdf bib
Sequence to Sequence Mixture Model for Diverse Machine Translation
Xuanli He | Gholamreza Haffari | Mohammad Norouzi
Proceedings of the 22nd Conference on Computational Natural Language Learning

Sequence to sequence (SEQ2SEQ) models lack diversity in their generated translations. This can be attributed to their limitations in capturing lexical and syntactic variations in parallel corpora, due to different styles, genres, topics, or ambiguity of human translation process. In this paper, we develop a novel sequence to sequence mixture (S2SMIX) model that improves both translation diversity and quality by adopting a committee of specialized translation models rather than a single translation model. Each mixture component selects its own training dataset via optimization of the marginal log-likelihood, which leads to a soft clustering of the parallel corpus. Experiments on four language pairs demonstrate the superiority of our mixture model compared to SEQ2SEQ model with the standard and diversity encouraged beam search. Our mixture model incurs negligible additional parameters and no extra computation in the decoding time.

pdf bib
Embedding Text in Hyperbolic Spaces
Bhuwan Dhingra | Christopher Shallue | Mohammad Norouzi | Andrew Dai | George Dahl
Proceedings of the Twelfth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-12)

Natural language text exhibits hierarchical structure in a variety of respects. Ideally, we could incorporate our prior knowledge of this hierarchical structure into unsupervised learning algorithms that work on text data. Recent work by Nickel and Kiela (2017) proposed using hyperbolic instead of Euclidean embedding spaces to represent hierarchical data and demonstrated encouraging results when embedding graphs. In this work, we extend their method with a re-parameterization technique that allows us to learn hyperbolic embeddings of arbitrarily parameterized objects. We apply this framework to learn word and sentence embeddings in hyperbolic space in an unsupervised manner from text corpora. The resulting embeddings seem to encode certain intuitive notions of hierarchy, such as word-context frequency and phrase constituency. However, the implicit continuous hierarchy in the learned hyperbolic space makes interrogating the model’s learned hierarchies more difficult than for models that learn explicit edges between items. The learned hyperbolic embeddings show improvements over Euclidean embeddings in some – but not all – downstream tasks, suggesting that hierarchical organization is more useful for some tasks than others.

pdf bib
The Importance of Generation Order in Language Modeling
Nicolas Ford | Daniel Duckworth | Mohammad Norouzi | George Dahl
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Neural language models are a critical component of state-of-the-art systems for machine translation, summarization, audio transcription, and other tasks. These language models are almost universally autoregressive in nature, generating sentences one token at a time from left to right. This paper studies the influence of token generation order on model quality via a novel two-pass language model that produces partially-filled sentence “templates” and then fills in missing tokens. We compare various strategies for structuring these two passes and observe a surprisingly large variation in model quality. We find the most effective strategy generates function words in the first pass followed by content words in the second. We believe these experimental results justify a more extensive investigation of the generation order for neural language models.