Scientific abstracts provide a concise summary of research findings, making them a valuable resource for extracting scientific arguments. In this study, we assess various unsupervised approaches for extracting arguments as aligned premise-conclusion pairs: semantic similarity, text perplexity, and mutual information. We aggregate structured abstracts from PubMed Central Open Access papers published in 2022 and evaluate the argument aligners in terms of the performance of language models that we fine-tune to generate the conclusions from the extracted premise given as input prompts. We find that mutual information outperforms the other measures on this task, suggesting that the reasoning process in scientific abstracts hinges mostly on linguistic constructs beyond simple textual similarity.
Citation generation aims to generate a citation sentence that refers to a chosen paper in the context of a manuscript. However, a rigid citation generation process is at odds with an author’s desire to control specific attributes, such as 1) the citation intent, e.g., either introducing background information or comparing results, and 2) keywords that should appear in the citation text. To provide these degrees of controllability during citation generation, we propose to integrate the manuscript context, the context of the referenced paper, and the desired control attributes into a structured template and use it to fine-tune a language model (LM) via next-token prediction. We then utilize Proximal Policy Optimization to directly optimize the LM in favor of a high score of our proposed controllability metric. The proposed workflow harmoniously combines citation attribute suggestion and conditional citation generation into one LM, allowing for better user control.
Good scientific writing makes use of specific sentence and paragraph structures, providing a rich platform for discourse analysis and developing tools to enhance text readability. In this vein, we introduce SciPara, a novel dataset consisting of 981 scientific paragraphs annotated by experts in terms of sentence discourse types and topic information. On this dataset, we explored two tasks: 1) discourse category classification, which is to predict the discourse category of a sentence by using its paragraph and surrounding paragraphs as context, and 2) discourse sentence generation, which is to generate a sentence of a certain discourse category by using various contexts as input. We found that Pre-trained Language Models (PLMs) can accurately identify Topic Sentences in SciPara, but have difficulty distinguishing Concluding, Transition, and Supporting Sentences. The quality of the sentences generated by all investigated PLMs improved with amount of context, regardless of discourse category. However, not all contexts were equally influential. Contrary to common assumptions about well-crafted scientific paragraphs, our analysis revealed that paradoxically, paragraphs with complete discourse structures were less readable.
Scientific writing involves retrieving, summarizing, and citing relevant papers, which can be time-consuming processes. Although in many workflows these processes are serially linked, there are opportunities for natural language processing (NLP) to provide end-to-end assistive tools. We propose SciLit, a pipeline that automatically recommends relevant papers, extracts highlights, and suggests a reference sentence as a citation of a paper, taking into consideration the user-provided context and keywords. SciLit efficiently recommends papers from large databases of hundreds of millions of papers using a two-stage pre-fetching and re-ranking literature search system that flexibly deals with addition and removal of a paper database. We provide a convenient user interface that displays the recommended papers as extractive summaries and that offers abstractively-generated citing sentences which are aligned with the provided context and which mention the chosen keyword(s). Our assistive tool for literature discovery and scientific writing is available at https://scilit.vercel.app
The abstracts of scientific papers typically contain both premises (e.g., background and observations) and conclusions. Although conclusion sentences are highlighted in structured abstracts, in non-structured abstracts the concluding information is not explicitly marked, which makes the automatic segmentation of conclusions from scientific abstracts a challenging task. In this work, we explore Normalized Mutual Information (NMI) as a means for abstract segmentation. We consider each abstract as a recurrent cycle of sentences and place two segmentation boundaries by greedily optimizing the NMI score between the two segments, assuming that conclusions are strongly semantically linked with preceding premises. On non-structured abstracts, our proposed unsupervised approach GreedyCAS achieves the best performance across all evaluation metrics; on structured abstracts, GreedyCAS outperforms all baseline methods measured by Pk. The strong correlation of NMI to our evaluation metrics reveals the effectiveness of NMI for abstract segmentation.
We introduce MemSum (Multi-step Episodic Markov decision process extractive SUMmarizer), a reinforcement-learning-based extractive summarizer enriched at each step with information on the current extraction history. When MemSum iteratively selects sentences into the summary, it considers a broad information set that would intuitively also be used by humans in this task: 1) the text content of the sentence, 2) the global text context of the rest of the document, and 3) the extraction history consisting of the set of sentences that have already been extracted. With a lightweight architecture, MemSum obtains state-of-the-art test-set performance (ROUGE) in summarizing long documents taken from PubMed, arXiv, and GovReport. Ablation studies demonstrate the importance of local, global, and history information. A human evaluation confirms the high quality and low redundancy of the generated summaries, stemming from MemSum’s awareness of extraction history.
In scientific papers, arguments are essential for explaining authors’ findings. As substrates of the reasoning process, arguments are often decorated with discourse indicators such as “which shows that” or “suggesting that”. However, it remains understudied whether discourse indicators by themselves can be used as an effective marker of the local argument components (LACs) in the body text that support the main claim in the abstract, i.e., the global argument. In this work, we investigate whether discourse indicators reflect the global premise and conclusion. We construct a set of regular expressions for over 100 word- and phrase-level discourse indicators and measure the alignment of LACs extracted by discourse indicators with the global arguments. We find a positive correlation between the alignment of local premises and local conclusions. However, compared to a simple textual intersection baseline, discourse indicators achieve lower ROUGE recall and have limited capability of extracting LACs relevant to the global argument; thus their role in scientific reasoning is less salient as expected.
Each claim in a research paper requires all relevant prior knowledge to be discovered, assimilated, and appropriately cited. However, despite the availability of powerful search engines and sophisticated text editing software, discovering relevant papers and integrating the knowledge into a manuscript remain complex tasks associated with high cognitive load. To define comprehensive search queries requires strong motivation from authors, irrespective of their familiarity with the research field. Moreover, switching between independent applications for literature discovery, bibliography management, reading papers, and writing text burdens authors further and interrupts their creative process. Here, we present a web application that combines text editing and literature discovery in an interactive user interface. The application is equipped with a search engine that couples Boolean keyword filtering with nearest neighbor search over text embeddings, providing a discovery experience tuned to an author’s manuscript and his interests. Our application aims to take a step towards more enjoyable and effortless academic writing. The demo of the application (https://SciEditorDemo2020.herokuapp.com) and a short video tutorial (https://youtu.be/pkdVU60IcRc) are available online.