2024
pdf
bib
abs
M3-Embedding: Multi-Linguality, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation
Jianlyu Chen
|
Shitao Xiao
|
Peitian Zhang
|
Kun Luo
|
Defu Lian
|
Zheng Liu
Findings of the Association for Computational Linguistics: ACL 2024
In this paper, we introduce a new embedding model called M3-Embedding, which is distinguished for its versatility in Multi-Linguality, Multi-Functionality, and Multi-Granularity. It provides a uniform support for the semantic retrieval of more than 100 working languages. It can simultaneously accomplish the three common retrieval functionalities: dense retrieval, multi-vector retrieval, and sparse retrieval. Besides, it is also capable of processing inputs of different granularities, spanning from short sentences to long documents of up to 8,192 tokens. The effective training of M3-Embedding presents a series of technical contributions. Notably, we propose a novel self-knowledge distillation approach, where the relevance scores from different retrieval functionalities can be integrated as the teacher signal to enhance the training quality. We also optimize the batching strategy, which enables a large batch size and high training throughput to improve the discriminativeness of embeddings. M3-Embedding exhibits a superior performance in our experiment, leading to new state-of-the-art results on multilingual, cross-lingual, and long-document retrieval benchmarks.
pdf
bib
abs
An Element is Worth a Thousand Words: Enhancing Legal Case Retrieval by Incorporating Legal Elements
Chenlong Deng
|
Zhicheng Dou
|
Yujia Zhou
|
Peitian Zhang
|
Kelong Mao
Findings of the Association for Computational Linguistics: ACL 2024
Legal case retrieval plays an important role in promoting judicial justice and fairness. One of its greatest challenges is that the definition of relevance goes far beyond the common semantic relevance as in ad-hoc retrieval. In this paper, we reveal that the legal elements, which typically comprise key facts in a specialized legal context, can largely improve the relevance matching of legal case retrieval. To facilitate the use of legal elements, we construct a Chinese legal element dataset called LeCaRD-Elem based on the widely-used LeCaRD dataset, through a two-stage semi-automatic method with a minimized reliance on human labor. Meanwhile, we introduce two new models to enhance legal search using legal elements. The first, Elem4LCR-E, is a two-stage model that explicitly predicts legal elements from texts and then leverages them for improved ranking. Recognizing the potential benefits of more seamless integration, we further propose an end-to-end model called Elem4LCR-I, which internalizes the legal element knowledge into its model parameters using a tailored teacher-student training framework. Extensive experiments underscore the significant value of legal elements and demonstrate the superiority of our two proposed models in enhancing legal search over existing methods.
pdf
bib
abs
LM-Cocktail: Resilient Tuning of Language Models via Model Merging
Shitao Xiao
|
Zheng Liu
|
Peitian Zhang
|
Xingrun Xing
Findings of the Association for Computational Linguistics: ACL 2024
The pre-trained language models are continually fine-tuned to better support downstream applications. However, this operation may result in significant performance degeneration on general tasks beyond the targeted domain. To overcome this problem, we propose LM-Cocktail which enables the fine-tuned model to stay resilient in general perspectives. Our method is conducted in the form of model merging, where the fine-tuned language model is merged with the pre-trained base model or the peer models from other domains through weighted average. Despite simplicity, LM-Cocktail is surprisingly effective: the resulted model is able to achieve a strong empirical performance in the whole scope of general tasks while preserving a superior capacity in its targeted domain.
pdf
bib
abs
INTERS: Unlocking the Power of Large Language Models in Search with Instruction Tuning
Yutao Zhu
|
Peitian Zhang
|
Chenghao Zhang
|
Yifei Chen
|
Binyu Xie
|
Zheng Liu
|
Ji-Rong Wen
|
Zhicheng Dou
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large language models (LLMs) have demonstrated impressive capabilities in various natural language processing tasks. Despite this, their application to information retrieval (IR) tasks is still challenging due to the infrequent occurrence of many IR-specific concepts in natural language. While prompt-based methods can provide task descriptions to LLMs, they often fall short in facilitating a comprehensive understanding and execution of IR tasks, thereby limiting LLMs’ applicability. To address this gap, in this work, we explore the potential of instruction tuning to enhance LLMs’ proficiency in IR tasks. We introduce a novel instruction tuning dataset, INTERS, encompassing 20 tasks across three fundamental IR categories: query understanding, document understanding, and query-document relationship understanding. The data are derived from 43 distinct datasets with manually written templates. Our empirical results reveal that INTERS significantly boosts the performance of various publicly available LLMs, such as LLaMA, Mistral, and Falcon, in IR tasks. Furthermore, we conduct extensive experiments to analyze the effects of instruction design, template diversity, few-shot demonstrations, and the volume of instructions on performance. We make our dataset and the fine-tuned models publicly accessible at https://github.com/DaoD/INTERS.
pdf
bib
abs
A Multi-Task Embedder For Retrieval Augmented LLMs
Peitian Zhang
|
Zheng Liu
|
Shitao Xiao
|
Zhicheng Dou
|
Jian-Yun Nie
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
LLMs confront inherent limitations in terms of its knowledge, memory, and action. The retrieval augmentation stands as a vital mechanism to address these limitations, which brings in useful information from external sources to augment the LLM. However, existing retrieval methods encounter two pressing issues. On one hand, the general retrievers are not properly optimized for retrieval augmentation hence exhibit limited effectiveness; on the other hand, the task-specific retrievers excel in the targeted retrieval augmentation scenario, while lack the versatility to handle diverse scenarios. In this work, we propose LLM-Embedder for the unified support of diverse retrieval augmentation scenarios. Our method presents three technical contributions. Firstly, we introduce a new reward formulation, namely rank-aware reward. It exploits the ranking position of the desired output among N sampled outputs from the LLM, which leads to fine-grained and robust computation of reward from the LLM’s feedback. Secondly, we design a novel distillation objective, called graded distillation. It incorporates both the absolute value and the relative order of the reward for more sufficient utilization of the LLM’s feedback. Thirdly, we systematically optimize the multi-task learning, which effectively unifies the multiple retrieval functionalities into one model. In our experiment, LLM-Embedder substantially improves the LLM’s performances in various downstream tasks, while introducing superior retrieval augmentation’s effect over both general and task-specifc retrievers. Our data, code, and model have been released at https://github.com/FlagOpen/FlagEmbedding.
2023
pdf
bib
abs
Hybrid Inverted Index Is a Robust Accelerator for Dense Retrieval
Peitian Zhang
|
Zheng Liu
|
Shitao Xiao
|
Zhicheng Dou
|
Jing Yao
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Inverted file structure is a common technique for accelerating dense retrieval. It clusters documents based on their embeddings; during searching, it probes nearby clusters w.r.t. an input query and only evaluates documents within them by subsequent codecs, thus avoiding the expensive cost from exhaustive traversal. However, the clustering is always lossy, which results in the miss of relevant documents in the probed clusters and hence degrades retrieval quality. In contrast, lexical matching, such as overlaps of salient terms, tend to be strong features for identifying relevant documents. In this work, we present the Hybrid Inverted Index (HI2), where the embedding clusters and salient terms work collaboratively to accelerate dense retrieval. To make best of both effectiveness and efficiency, we devise a cluster selector and a term selector, to construct compact inverted lists and efficiently searching through them. Moreover, we leverage simple unsupervised algorithms as well as end-to-end knowledge distillation to learn these two modules, with the latter further boosting the effectiveness. Based on comprehensive experiments on popular retrieval benchmarks, we verify that clusters and terms indeed complement each other, enabling HI2 to achieve lossless retrieval quality with competitive efficiency across a variety of index settings.