Much of the work testing machine translation systems for robustness and sensitivity has been adversarial or tended towards testing noisy input such as spelling errors, or non-standard input such as dialects. In this work, we take a step back to investigate a sensitivity problem that can seem trivial and is often overlooked: punctuation. We perform basic sentence-final insertion and deletion perturbation tests with full stops, exclamation and questions marks across source languages and demonstrate a concerning finding: commercial, production-level machine translation systems are vulnerable to mere single punctuation insertion or deletion, resulting in unreliable translations. Moreover, we demonstrate that both string-based and model-based evaluation metrics also suffer from this vulnerability, producing significantly different scores when translations only differ in a single punctuation, with model-based metrics penalizing each punctuation differently. Our work calls into question the reliability of machine translation systems and their evaluation metrics, particularly for real-world use cases, where inconsistent punctuation is often the most common and the least disruptive noise.
Given the claims of improved text generation quality across various pre-trained neural models, we consider the coherence evaluation of machine generated text to be one of the principal applications of coherence models that needs to be investigated. Prior work in neural coherence modeling has primarily focused on devising new architectures for solving the permuted document task. We instead use a basic model architecture and show significant improvements over state of the art within the same training regime. We then design a harder self-supervision objective by increasing the ratio of negative samples within a contrastive learning setup, and enhance the model further through automatic hard negative mining coupled with a large global negative queue encoded by a momentum encoder. We show empirically that increasing the density of negative samples improves the basic model, and using a global negative queue further improves and stabilizes the model while training with hard negative samples. We evaluate the coherence model on task-independent test sets that resemble real-world applications and show significant improvements in coherence evaluations of downstream tasks.
Although coherence modeling has come a long way in developing novel models, their evaluation on downstream applications for which they are purportedly developed has largely been neglected. With the advancements made by neural approaches in applications such as machine translation (MT), summarization and dialog systems, the need for coherence evaluation of these tasks is now more crucial than ever. However, coherence models are typically evaluated only on synthetic tasks, which may not be representative of their performance in downstream applications. To investigate how representative the synthetic tasks are of downstream use cases, we conduct experiments on benchmarking well-known traditional and neural coherence models on synthetic sentence ordering tasks, and contrast this with their performance on three downstream applications: coherence evaluation for MT and summarization, and next utterance prediction in retrieval-based dialog. Our results demonstrate a weak correlation between the model performances in the synthetic tasks and the downstream applications, motivating alternate training and evaluation methods for coherence models.
Popular Neural Machine Translation model training uses strategies like backtranslation to improve BLEU scores, requiring large amounts of additional data and training. We introduce a class of conditional generative-discriminative hybrid losses that we use to fine-tune a trained machine translation model. Through a combination of targeted fine-tuning objectives and intuitive re-use of the training data the model has failed to adequately learn from, we improve the model performance of both a sentence-level and a contextual model without using any additional data. We target the improvement of pronoun translations through our fine-tuning and evaluate our models on a pronoun benchmark testset. Our sentence-level model shows a 0.5 BLEU improvement on both the WMT14 and the IWSLT13 De-En testsets, while our contextual model achieves the best results, improving from 31.81 to 32 BLEU on WMT14 De-En testset, and from 32.10 to 33.13 on the IWSLT13 De-En testset, with corresponding improvements in pronoun translation. We further show the generalizability of our method by reproducing the improvements on two additional language pairs, Fr-En and Cs-En.
The ongoing neural revolution in machine translation has made it easier to model larger contexts beyond the sentence-level, which can potentially help resolve some discourse-level ambiguities such as pronominal anaphora, thus enabling better translations. Unfortunately, even when the resulting improvements are seen as substantial by humans, they remain virtually unnoticed by traditional automatic evaluation measures like BLEU, as only a few words end up being affected. Thus, specialized evaluation measures are needed. With this aim in mind, we contribute an extensive, targeted dataset that can be used as a test suite for pronoun translation, covering multiple source languages and different pronoun errors drawn from real system translations, for English. We further propose an evaluation measure to differentiate good and bad pronoun translations. We also conduct a user study to report correlations with human judgments.
We propose an efficient neural framework for sentence-level discourse analysis in accordance with Rhetorical Structure Theory (RST). Our framework comprises a discourse segmenter to identify the elementary discourse units (EDU) in a text, and a discourse parser that constructs a discourse tree in a top-down fashion. Both the segmenter and the parser are based on Pointer Networks and operate in linear time. Our segmenter yields an F1 score of 95.4%, and our parser achieves an F1 score of 81.7% on the aggregated labeled (relation) metric, surpassing previous approaches by a good margin and approaching human agreement on both tasks (98.3 and 83.0 F1).
There is no agreed upon standard for the evaluation of conversational dialog systems, which are well-known to be hard to evaluate due to the difficulty in pinning down metrics that will correspond to human judgements and the subjective nature of human judgment itself. We explored the possibility of using Grice’s Maxims to evaluate effective communication in conversation. We collected some system generated dialogs from popular conversational chatbots across the spectrum and conducted a survey to see how the human judgements based on Gricean maxims correlate, and if such human judgments can be used as an effective evaluation metric for conversational dialog.