Community models for malicious content detection, which take into account the context from a social graph alongside the content itself, have shown remarkable performance on benchmark datasets. Yet, misinformation and hate speech continue to propagate on social media networks. This mismatch can be partially attributed to the limitations of current evaluation setups that neglect the rapid evolution of online content and the underlying social graph. In this paper, we propose a novel evaluation setup for model generalisation based on our few-shot subgraph sampling approach. This setup tests for generalisation through few labelled examples in local explorations of a larger graph, emulating more realistic application settings. We show this to be a challenging inductive setup, wherein strong performance on the training graph is not indicative of performance on unseen tasks, domains, or graph structures. Lastly, we show that graph meta-learners trained with our proposed few-shot subgraph sampling outperform standard community models in the inductive setup.
This paper examines the encoding of analogy in large-scale pretrained language models, such as BERT and GPT-2. Existing analogy datasets typically focus on a limited set of analogical relations, with a high similarity of the two domains between which the analogy holds. As a more realistic setup, we introduce the Scientific and Creative Analogy dataset (SCAN), a novel analogy dataset containing systematic mappings of multiple attributes and relational structures across dissimilar domains. Using this dataset, we test the analogical reasoning capabilities of several widely-used pretrained language models (LMs). We find that state-of-the-art LMs achieve low performance on these complex analogy tasks, highlighting the challenges still posed by analogy understanding.
On social media platforms, hateful and offensive language negatively impact the mental well-being of users and the participation of people from diverse backgrounds. Automatic methods to detect offensive language have largely relied on datasets with categorical labels. However, comments can vary in their degree of offensiveness. We create the first dataset of English language Reddit comments that has fine-grained, real-valued scores between -1 (maximally supportive) and 1 (maximally offensive). The dataset was annotated using Best–Worst Scaling, a form of comparative annotation that has been shown to alleviate known biases of using rating scales. We show that the method produces highly reliable offensiveness scores. Finally, we evaluate the ability of widely-used neural models to predict offensiveness scores on this new dataset.
The great majority of languages in the world are considered under-resourced for successful application of deep learning methods. In this work, we propose a meta-learning approach to document classification in low-resource languages and demonstrate its effectiveness in two different settings: few-shot, cross-lingual adaptation to previously unseen languages; and multilingual joint-training when limited target-language data is available during trai-ing. We conduct a systematic comparison of several meta-learning methods, investigate multiple settings in terms of data availability, and show that meta-learning thrives in settings with a heterogeneous task distribution. We propose a simple, yet effective adjustment to existing meta-learning methods which allows for better and more stable learning, and set a new state-of-the-art on a number of languages while performing on-par on others, using only a small amount of labeled data.
Abuse on the Internet is an important societal problem of our time. Millions of Internet users face harassment, racism, personal attacks, and other types of abuse across various platforms. The psychological effects of abuse on individuals can be profound and lasting. Consequently, over the past few years, there has been a substantial research effort towards automated abusive language detection in the field of NLP. In this position paper, we discuss the role that modeling of users and online communities plays in abuse detection. Specifically, we review and analyze the state of the art methods that leverage user or community information to enhance the understanding and detection of abusive language. We then explore the ethical challenges of incorporating user and community information, laying out considerations to guide future research. Finally, we address the topic of explainability in abusive language detection, proposing properties that an explainable method should aim to exhibit. We describe how user and community information can facilitate the realization of these properties and discuss the effective operationalization of explainability in view of the properties.
The rise of online communication platforms has been accompanied by some undesirable effects, such as the proliferation of aggressive and abusive behaviour online. Aiming to tackle this problem, the natural language processing (NLP) community has experimented with a range of techniques for abuse detection. While achieving substantial success, these methods have so far only focused on modelling the linguistic properties of the comments and the online communities of users, disregarding the emotional state of the users and how this might affect their language. The latter is, however, inextricably linked to abusive behaviour. In this paper, we present the first joint model of emotion and abusive language detection, experimenting in a multi-task learning framework that allows one task to inform the other. Our results demonstrate that incorporating affective features leads to significant improvements in abuse detection performance across datasets.
The success of deep learning methods hinges on the availability of large training datasets annotated for the task of interest. In contrast to human intelligence, these methods lack versatility and struggle to learn and adapt quickly to new tasks, where labeled data is scarce. Meta-learning aims to solve this problem by training a model on a large number of few-shot tasks, with an objective to learn new tasks quickly from a small number of examples. In this paper, we propose a meta-learning framework for few-shot word sense disambiguation (WSD), where the goal is to learn to disambiguate unseen words from only a few labeled instances. Meta-learning approaches have so far been typically tested in an N-way, K-shot classification setting where each task has N classes with K examples per class. Owing to its nature, WSD deviates from this controlled setup and requires the models to handle a large number of highly unbalanced classes. We extend several popular meta-learning approaches to this scenario, and analyze their strengths and weaknesses in this new challenging setting.
Abuse on the Internet represents a significant societal problem of our time. Previous research on automated abusive language detection in Twitter has shown that community-based profiling of users is a promising technique for this task. However, existing approaches only capture shallow properties of online communities by modeling follower–following relationships. In contrast, working with graph convolutional networks (GCNs), we present the first approach that captures not only the structure of online communities but also the linguistic behavior of the users within them. We show that such a heterogeneous graph-structured modeling of communities significantly advances the current state of the art in abusive language detection.
We describe the CAMsterdam team entry to the SemEval-2019 Shared Task 6 on offensive language identification in Twitter data. Our proposed model learns to extract textual features using a multi-layer recurrent network, and then performs text classification using gradient-boosted decision trees (GBDT). A self-attention architecture enables the model to focus on the most relevant areas in the text. In order to enrich input representations, we use node2vec to learn globally optimised embeddings for hashtags, which are then given as additional features to the GBDT classifier. Our best model obtains 78.79% macro F1-score on detecting offensive language (subtask A), 66.32% on categorising offence types (targeted/untargeted; subtask B), and 55.36% on identifying the target of offence (subtask C).
The rapid growth of social media in recent years has fed into some highly undesirable phenomena such as proliferation of hateful and offensive language on the Internet. Previous research suggests that such abusive content tends to come from users who share a set of common stereotypes and form communities around them. The current state-of-the-art approaches to abuse detection are oblivious to user and community information and rely entirely on textual (i.e., lexical and semantic) cues. In this paper, we propose a novel approach to this problem that incorporates community-based profiling features of Twitter users. Experimenting with a dataset of 16k tweets, we show that our methods significantly outperform the current state of the art in abuse detection. Further, we conduct a qualitative analysis of model characteristics. We release our code, pre-trained models and all the resources used in the public domain.
The advent of social media in recent years has fed into some highly undesirable phenomena such as proliferation of offensive language, hate speech, sexist remarks, etc. on the Internet. In light of this, there have been several efforts to automate the detection and moderation of such abusive content. However, deliberate obfuscation of words by users to evade detection poses a serious challenge to the effectiveness of these efforts. The current state of the art approaches to abusive language detection, based on recurrent neural networks, do not explicitly address this problem and resort to a generic OOV (out of vocabulary) embedding for unseen words. However, in using a single embedding for all unseen words we lose the ability to distinguish between obfuscated and non-obfuscated or rare words. In this paper, we address this problem by designing a model that can compose embeddings for unseen words. We experimentally demonstrate that our approach significantly advances the current state of the art in abuse detection on datasets from two different domains, namely Twitter and Wikipedia talk page.