Qiusi Zhan


2024

pdf bib
InjecAgent: Benchmarking Indirect Prompt Injections in Tool-Integrated Large Language Model Agents
Qiusi Zhan | Zhixiang Liang | Zifan Ying | Daniel Kang
Findings of the Association for Computational Linguistics: ACL 2024

Recent work has embodied LLMs as agents, allowing them to access tools, perform actions, and interact with external content (e.g., emails or websites). However, external content introduces the risk of indirect prompt injection (IPI) attacks, where malicious instructions are embedded within the content processed by LLMs, aiming to manipulate these agents into executing detrimental actions against users. Given the potentially severe consequences of such attacks, establishing benchmarks to assess and mitigate these risks is imperative.In this work, we introduce InjecAgent, a benchmark designed to assess the vulnerability of tool-integrated LLM agents to IPI attacks. InjecAgent comprises 1,054 test cases covering 17 different user tools and 62 attacker tools. We categorize attack intentions into two primary types: direct harm to users and exfiltration of private data. We conduct a comprehensive evaluation of 30 different LLM agents and show that agents are vulnerable to IPI attacks, with ReAct-prompted GPT-4 vulnerable to attacks 24% of the time. Further investigation into an enhanced setting, where the attacker instructions are reinforced with a hacking prompt, shows additional increases in success rates. Our findings raise questions about the widespread deployment of LLM Agents.

pdf bib
Removing RLHF Protections in GPT-4 via Fine-Tuning
Qiusi Zhan | Richard Fang | Rohan Bindu | Akul Gupta | Tatsunori Hashimoto | Daniel Kang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)

As large language models (LLMs) have increased in their capabilities, so doestheir potential for dual use. To reduce harmful outputs, produces and vendors ofLLMs have used reinforcement learning with human feedback (RLHF). In tandem,LLM vendors have been increasingly enabling fine-tuning of their most powerfulmodels. However, concurrent work has shown that fine-tuning can remove RLHFprotections. We may expect that the most powerful models currently available(GPT-4) are less susceptible to fine-tuning attacks. In this work, we show the contrary: fine-tuning allows attackers to remove RLHFprotections with as few as 340 examples and a 95% success rate. These trainingexamples can be automatically generated with weaker models. We further show thatremoving RLHF protections does not decrease usefulness on non-censored outputs,providing evidence that our fine-tuning strategy does not decrease usefulnessdespite using weaker models to generate training data. Our results show the needfor further research on protections on LLMs.

2023

pdf bib
GLEN: General-Purpose Event Detection for Thousands of Types
Sha Li | Qiusi Zhan | Kathryn Conger | Martha Palmer | Heng Ji | Jiawei Han
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The progress of event extraction research has been hindered by the absence of wide-coverage, large-scale datasets. To make event extraction systems more accessible, we build a general-purpose event detection dataset GLEN, which covers 205K event mentions with 3,465 different types, making it more than 20x larger in ontology than today’s largest event dataset. GLEN is created by utilizing the DWD Overlay, which provides a mapping between Wikidata Qnodes and PropBank rolesets. This enables us to use the abundant existing annotation for PropBank as distant supervision. In addition, we also propose a new multi-stage event detection model specifically designed to handle the large ontology size in GLEN. We show that our model exhibits superior performance compared to a range of baselines including InstructGPT. Finally, we perform error analysis and show that label noise is still the largest challenge for improving performance for this new dataset.

pdf bib
User Simulator Assisted Open-ended Conversational Recommendation System
Qiusi Zhan | Xiaojie Guo | Heng Ji | Lingfei Wu
Proceedings of the 5th Workshop on NLP for Conversational AI (NLP4ConvAI 2023)

Conversational recommendation systems (CRS) have gained popularity in e-commerce as they can recommend items during user interactions. However, current open-ended CRS have limited recommendation performance due to their short-sighted training process, which only predicts one utterance at a time without considering its future impact. To address this, we propose a User Simulator (US) that communicates with the CRS using natural language based on given user preferences, enabling long-term reinforcement learning. We also introduce a framework that uses reinforcement learning (RL) with two novel rewards, i.e., recommendation and conversation rewards, to train the CRS. This approach considers the long-term goals and improves both the conversation and recommendation performance of the CRS. Our experiments show that our proposed framework improves the recall of recommendations by almost 100%. Moreover, human evaluation demonstrates the superiority of our framework in enhancing the informativeness of generated utterances.

2022

pdf bib
ConFiguRe: Exploring Discourse-level Chinese Figures of Speech
Dawei Zhu | Qiusi Zhan | Zhejian Zhou | Yifan Song | Jiebin Zhang | Sujian Li
Proceedings of the 29th International Conference on Computational Linguistics

Figures of speech, such as metaphor and irony, are ubiquitous in literature works and colloquial conversations. This poses great challenge for natural language understanding since figures of speech usually deviate from their ostensible meanings to express deeper semantic implications. Previous research lays emphasis on the literary aspect of figures and seldom provide a comprehensive exploration from a view of computational linguistics. In this paper, we first propose the concept of figurative unit, which is the carrier of a figure. Then we select 12 types of figures commonly used in Chinese, and build a Chinese corpus for Contextualized Figure Recognition (ConFiguRe). Different from previous token-level or sentence-level counterparts, ConFiguRe aims at extracting a figurative unit from discourse-level context, and classifying the figurative unit into the right figure type. On ConFiguRe, three tasks, i.e., figure extraction, figure type classification and figure recognition, are designed and the state-of-the-art techniques are utilized to implement the benchmarks. We conduct thorough experiments and show that all three tasks are challenging for existing models, thus requiring further research. Our dataset and code are publicly available at https://github.com/pku-tangent/ConFiguRe.

pdf bib
EA2E: Improving Consistency with Event Awareness for Document-Level Argument Extraction
Qi Zeng | Qiusi Zhan | Heng Ji
Findings of the Association for Computational Linguistics: NAACL 2022

Events are inter-related in documents. Motivated by the one-sense-per-discourse theory, we hypothesize that a participant tends to play consistent roles across multiple events in the same document. However recent work on document-level event argument extraction models each individual event in isolation and therefore causes inconsistency among extracted arguments across events, which will further cause discrepancy for downstream applications such as event knowledge base population, question answering, and hypothesis generation. In this work, we formulate event argument consistency as the constraints from event-event relations under the document-level setting. To improve consistency we introduce the Event-Aware Argument Extraction (EA2E) model with augmented context for training and inference. Experiment results on WIKIEVENTS and ACE2005 datasets demonstrate the effectiveness of EA2E compared to baseline methods.