2024
pdf
bib
abs
Automated test generation to evaluate tool-augmented LLMs as conversational AI agents
Samuel Arcadinho
|
David Oliveira Aparicio
|
Mariana S. C. Almeida
Proceedings of the 2nd GenBench Workshop on Generalisation (Benchmarking) in NLP
Tool-augmented LLMs are a promising approach to create AI agents that can have realistic conversations, follow procedures, and call appropriate functions. However, evaluating them is challenging due to the diversity of possible conversations, and existing datasets focus only on single interactions and function-calling. We present a test generation pipeline to evaluate LLMs as conversational AI agents. Our framework uses LLMs to generate diverse tests grounded on user-defined procedures. For that, we use intermediate graphs to limit the LLM test generator’s tendency to hallucinate content that is not grounded on input procedures, and enforces high coverage of the possible conversations. Additionally, we put forward ALMITA, a manually curated dataset for evaluating AI agents in customer support, and use it to evaluate existing LLMs. Our results show that while tool-augmented LLMs perform well in single interactions, they often struggle to handle complete conversations. While our focus is on customer support, our test generation pipeline is general enough to evaluate different AI agents.
2023
pdf
bib
abs
RWKV: Reinventing RNNs for the Transformer Era
Bo Peng
|
Eric Alcaide
|
Quentin Anthony
|
Alon Albalak
|
Samuel Arcadinho
|
Stella Biderman
|
Huanqi Cao
|
Xin Cheng
|
Michael Chung
|
Leon Derczynski
|
Xingjian Du
|
Matteo Grella
|
Kranthi Gv
|
Xuzheng He
|
Haowen Hou
|
Przemyslaw Kazienko
|
Jan Kocon
|
Jiaming Kong
|
Bartłomiej Koptyra
|
Hayden Lau
|
Jiaju Lin
|
Krishna Sri Ipsit Mantri
|
Ferdinand Mom
|
Atsushi Saito
|
Guangyu Song
|
Xiangru Tang
|
Johan Wind
|
Stanisław Woźniak
|
Zhenyuan Zhang
|
Qinghua Zhou
|
Jian Zhu
|
Rui-Jie Zhu
Findings of the Association for Computational Linguistics: EMNLP 2023
Transformers have revolutionized almost all natural language processing (NLP) tasks but suffer from memory and computational complexity that scales quadratically with sequence length. In contrast, recurrent neural networks (RNNs) exhibit linear scaling in memory and computational requirements but struggle to match the same performance as Transformers due to limitations in parallelization and scalability. We propose a novel model architecture, Receptance Weighted Key Value (RWKV), that combines the efficient parallelizable training of transformers with the efficient inference of RNNs. Our approach leverages a linear attention mechanism and allows us to formulate the model as either a Transformer or an RNN, thus parallelizing computations during training and maintains constant computational and memory complexity during inference. We scale our models as large as 14 billion parameters, by far the largest dense RNN ever trained, and find RWKV performs on par with similarly sized Transformers, suggesting future work can leverage this architecture to create more efficient models. This work presents a significant step towards reconciling trade-offs between computational efficiency and model performance in sequence processing tasks.