Sanjay Subramanian


2024

pdf bib
Using Language Models to Disambiguate Lexical Choices in Translation
Josh Barua | Sanjay Subramanian | Kayo Yin | Alane Suhr
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

In translation, a concept represented by a single word in a source language can have multiple variations in a target language. The task of lexical selection requires using context to identify which variation is most appropriate for a source text. We work with native speakers of nine languages to create DTAiLS, a dataset of 1,377 sentence pairs that exhibit cross-lingual concept variation when translating from English. We evaluate recent LLMs and neural machine translation systems on DTAiLS, with the best-performing model, GPT-4, achieving from 67 to 85% accuracy across languages. Finally, we use language models to generate English rules describing target-language concept variations. Providing weaker models with high-quality lexical rules improves accuracy substantially, in some cases reaching or outperforming GPT-4.

pdf bib
TraveLER: A Modular Multi-LMM Agent Framework for Video Question-Answering
Chuyi Shang | Amos You | Sanjay Subramanian | Trevor Darrell | Roei Herzig
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Recently, image-based Large Multimodal Models (LMMs) have made significant progress in video question-answering (VideoQA) using a frame-wise approach by leveraging large-scale pretraining in a zero-shot manner. Nevertheless, these models need to be capable of finding relevant information, extracting it, and answering the question simultaneously. Currently, existing methods perform all of these steps in a single pass without being able to adapt if insufficient or incorrect information is collected. To overcome this, we introduce a modular multi-LMM agent framework based on several agents with different roles, instructed by a Planner agent that updates its instructions using shared feedback from the other agents. Specifically, we propose TraveLER, a method that can create a plan to "**Trave**rse” through the video, ask questions about individual frames to "**L**ocate” and store key information, and then "**E**valuate” if there is enough information to answer the question. Finally, if there is not enough information, our method is able to "**R**eplan” based on its collected knowledge. Through extensive experiments, we find that the proposed TraveLER approach improves performance on several VideoQA benchmarks without the need to fine-tune on specific datasets. Our code is available at https://github.com/traveler-framework/TraveLER.

2023

pdf bib
Modular Visual Question Answering via Code Generation
Sanjay Subramanian | Medhini Narasimhan | Kushal Khangaonkar | Kevin Yang | Arsha Nagrani | Cordelia Schmid | Andy Zeng | Trevor Darrell | Dan Klein
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

We present a framework that formulates visual question answering as modular code generation. In contrast to prior work on modular approaches to VQA, our approach requires no additional training and relies on pre-trained language models (LMs), visual models pre-trained on image-caption pairs, and fifty VQA examples used for in-context learning. The generated Python programs invoke and compose the outputs of the visual models using arithmetic and conditional logic. Our approach improves accuracy on the COVR dataset by at least 3% and on the GQA dataset by 2% compared to the few-shot baseline that does not employ code generation.

pdf bib
From Wrong To Right: A Recursive Approach Towards Vision-Language Explanation
Jiaxin Ge | Sanjay Subramanian | Trevor Darrell | Boyi Li
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Addressing the challenge of adapting pre-trained vision-language models for generating insightful explanations for visual reasoning tasks with limited annotations, we present ReVisE: a Recursive Visual Explanation algorithm. Our method iteratively computes visual features (conditioned on the text input), an answer, and an explanation, to improve the explanation quality step by step until the answer converges. We find that this multi-step approach guides the model to correct its own answers and outperforms single-step explanation generation. Furthermore, explanations generated by ReVisE also serve as valuable annotations for few-shot self-training. Our approach outperforms previous methods while utilizing merely 5% of the human-annotated explanations across 10 metrics, demonstrating up to a 4.2 and 1.3 increase in BLEU-1 score on the VCR and VQA-X datasets, underscoring the efficacy and data-efficiency of our method.

2022

pdf bib
ReCLIP: A Strong Zero-Shot Baseline for Referring Expression Comprehension
Sanjay Subramanian | William Merrill | Trevor Darrell | Matt Gardner | Sameer Singh | Anna Rohrbach
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Training a referring expression comprehension (ReC) model for a new visual domain requires collecting referring expressions, and potentially corresponding bounding boxes, for images in the domain. While large-scale pre-trained models are useful for image classification across domains, it remains unclear if they can be applied in a zero-shot manner to more complex tasks like ReC. We present ReCLIP, a simple but strong zero-shot baseline that repurposes CLIP, a state-of-the-art large-scale model, for ReC. Motivated by the close connection between ReC and CLIP’s contrastive pre-training objective, the first component of ReCLIP is a region-scoring method that isolates object proposals via cropping and blurring, and passes them to CLIP. However, through controlled experiments on a synthetic dataset, we find that CLIP is largely incapable of performing spatial reasoning off-the-shelf. We reduce the gap between zero-shot baselines from prior work and supervised models by as much as 29% on RefCOCOg, and on RefGTA (video game imagery), ReCLIP’s relative improvement over supervised ReC models trained on real images is 8%.

2021

pdf bib
Latent Compositional Representations Improve Systematic Generalization in Grounded Question Answering
Ben Bogin | Sanjay Subramanian | Matt Gardner | Jonathan Berant
Transactions of the Association for Computational Linguistics, Volume 9

Answering questions that involve multi-step reasoning requires decomposing them and using the answers of intermediate steps to reach the final answer. However, state-of-the-art models in grounded question answering often do not explicitly perform decomposition, leading to difficulties in generalization to out-of-distribution examples. In this work, we propose a model that computes a representation and denotation for all question spans in a bottom-up, compositional manner using a CKY-style parser. Our model induces latent trees, driven by end-to-end (the answer) supervision only. We show that this inductive bias towards tree structures dramatically improves systematic generalization to out-of- distribution examples, compared to strong baselines on an arithmetic expressions benchmark as well as on C losure, a dataset that focuses on systematic generalization for grounded question answering. On this challenging dataset, our model reaches an accuracy of 96.1%, significantly higher than prior models that almost perfectly solve the task on a random, in-distribution split.

2020

pdf bib
Obtaining Faithful Interpretations from Compositional Neural Networks
Sanjay Subramanian | Ben Bogin | Nitish Gupta | Tomer Wolfson | Sameer Singh | Jonathan Berant | Matt Gardner
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Neural module networks (NMNs) are a popular approach for modeling compositionality: they achieve high accuracy when applied to problems in language and vision, while reflecting the compositional structure of the problem in the network architecture. However, prior work implicitly assumed that the structure of the network modules, describing the abstract reasoning process, provides a faithful explanation of the model’s reasoning; that is, that all modules perform their intended behaviour. In this work, we propose and conduct a systematic evaluation of the intermediate outputs of NMNs on NLVR2 and DROP, two datasets which require composing multiple reasoning steps. We find that the intermediate outputs differ from the expected output, illustrating that the network structure does not provide a faithful explanation of model behaviour. To remedy that, we train the model with auxiliary supervision and propose particular choices for module architecture that yield much better faithfulness, at a minimal cost to accuracy.

pdf bib
Evaluating Models’ Local Decision Boundaries via Contrast Sets
Matt Gardner | Yoav Artzi | Victoria Basmov | Jonathan Berant | Ben Bogin | Sihao Chen | Pradeep Dasigi | Dheeru Dua | Yanai Elazar | Ananth Gottumukkala | Nitish Gupta | Hannaneh Hajishirzi | Gabriel Ilharco | Daniel Khashabi | Kevin Lin | Jiangming Liu | Nelson F. Liu | Phoebe Mulcaire | Qiang Ning | Sameer Singh | Noah A. Smith | Sanjay Subramanian | Reut Tsarfaty | Eric Wallace | Ally Zhang | Ben Zhou
Findings of the Association for Computational Linguistics: EMNLP 2020

Standard test sets for supervised learning evaluate in-distribution generalization. Unfortunately, when a dataset has systematic gaps (e.g., annotation artifacts), these evaluations are misleading: a model can learn simple decision rules that perform well on the test set but do not capture the abilities a dataset is intended to test. We propose a more rigorous annotation paradigm for NLP that helps to close systematic gaps in the test data. In particular, after a dataset is constructed, we recommend that the dataset authors manually perturb the test instances in small but meaningful ways that (typically) change the gold label, creating contrast sets. Contrast sets provide a local view of a model’s decision boundary, which can be used to more accurately evaluate a model’s true linguistic capabilities. We demonstrate the efficacy of contrast sets by creating them for 10 diverse NLP datasets (e.g., DROP reading comprehension, UD parsing, and IMDb sentiment analysis). Although our contrast sets are not explicitly adversarial, model performance is significantly lower on them than on the original test sets—up to 25% in some cases. We release our contrast sets as new evaluation benchmarks and encourage future dataset construction efforts to follow similar annotation processes.

pdf bib
MedICaT: A Dataset of Medical Images, Captions, and Textual References
Sanjay Subramanian | Lucy Lu Wang | Ben Bogin | Sachin Mehta | Madeleine van Zuylen | Sravanthi Parasa | Sameer Singh | Matt Gardner | Hannaneh Hajishirzi
Findings of the Association for Computational Linguistics: EMNLP 2020

Understanding the relationship between figures and text is key to scientific document understanding. Medical figures in particular are quite complex, often consisting of several subfigures (75% of figures in our dataset), with detailed text describing their content. Previous work studying figures in scientific papers focused on classifying figure content rather than understanding how images relate to the text. To address challenges in figure retrieval and figure-to-text alignment, we introduce MedICaT, a dataset of medical images in context. MedICaT consists of 217K images from 131K open access biomedical papers, and includes captions, inline references for 74% of figures, and manually annotated subfigures and subcaptions for a subset of figures. Using MedICaT, we introduce the task of subfigure to subcaption alignment in compound figures and demonstrate the utility of inline references in image-text matching. Our data and code can be accessed at https://github.com/allenai/medicat.

2019

pdf bib
An Improved Neural Baseline for Temporal Relation Extraction
Qiang Ning | Sanjay Subramanian | Dan Roth
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Determining temporal relations (e.g., before or after) between events has been a challenging natural language understanding task, partly due to the difficulty to generate large amounts of high-quality training data. Consequently, neural approaches have not been widely used on it, or showed only moderate improvements. This paper proposes a new neural system that achieves about 10% absolute improvement in accuracy over the previous best system (25% error reduction) on two benchmark datasets. The proposed system is trained on the state-of-the-art MATRES dataset and applies contextualized word embeddings, a Siamese encoder of a temporal common sense knowledge base, and global inference via integer linear programming (ILP). We suggest that the new approach could serve as a strong baseline for future research in this area.

pdf bib
AllenNLP Interpret: A Framework for Explaining Predictions of NLP Models
Eric Wallace | Jens Tuyls | Junlin Wang | Sanjay Subramanian | Matt Gardner | Sameer Singh
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations

Neural NLP models are increasingly accurate but are imperfect and opaque—they break in counterintuitive ways and leave end users puzzled at their behavior. Model interpretation methods ameliorate this opacity by providing explanations for specific model predictions. Unfortunately, existing interpretation codebases make it difficult to apply these methods to new models and tasks, which hinders adoption for practitioners and burdens interpretability researchers. We introduce AllenNLP Interpret, a flexible framework for interpreting NLP models. The toolkit provides interpretation primitives (e.g., input gradients) for any AllenNLP model and task, a suite of built-in interpretation methods, and a library of front-end visualization components. We demonstrate the toolkit’s flexibility and utility by implementing live demos for five interpretation methods (e.g., saliency maps and adversarial attacks) on a variety of models and tasks (e.g., masked language modeling using BERT and reading comprehension using BiDAF). These demos, alongside our code and tutorials, are available at https://allennlp.org/interpret.

pdf bib
Improving Generalization in Coreference Resolution via Adversarial Training
Sanjay Subramanian | Dan Roth
Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019)

In order for coreference resolution systems to be useful in practice, they must be able to generalize to new text. In this work, we demonstrate that the performance of the state-of-the-art system decreases when the names of PER and GPE named entities in the CoNLL dataset are changed to names that do not occur in the training set. We use the technique of adversarial gradient-based training to retrain the state-of-the-art system and demonstrate that the retrained system achieves higher performance on the CoNLL dataset (both with and without the change of named entities) and the GAP dataset.

pdf bib
Evaluation of named entity coreference
Oshin Agarwal | Sanjay Subramanian | Ani Nenkova | Dan Roth
Proceedings of the Second Workshop on Computational Models of Reference, Anaphora and Coreference

In many NLP applications like search and information extraction for named entities, it is necessary to find all the mentions of a named entity, some of which appear as pronouns (she, his, etc.) or nominals (the professor, the German chancellor, etc.). It is therefore important that coreference resolution systems are able to link these different types of mentions to the correct entity name. We evaluate state-of-the-art coreference resolution systems for the task of resolving all mentions to named entities. Our analysis reveals that standard coreference metrics do not reflect adequately the requirements in this task: they do not penalize systems for not identifying any mentions by name to an entity and they reward systems even if systems find correctly mentions to the same entity but fail to link these to a proper name (she–the student–no name). We introduce new metrics for evaluating named entity coreference that address these discrepancies and show that for the comparisons of competitive systems, standard coreference evaluations could give misleading results for this task. We are, however, able to confirm that the state-of-the art system according to traditional evaluations also performs vastly better than other systems on the named entity coreference task.