2024
pdf
bib
abs
LG AI Research & KAIST at EHRSQL 2024: Self-Training Large Language Models with Pseudo-Labeled Unanswerable Questions for a Reliable Text-to-SQL System on EHRs
Yongrae Jo
|
Seongyun Lee
|
Minju Seo
|
Sung Ju Hwang
|
Moontae Lee
Proceedings of the 6th Clinical Natural Language Processing Workshop
Text-to-SQL models are pivotal for making Electronic Health Records (EHRs) accessible to healthcare professionals without SQL knowledge. With the advancements in large language models, these systems have become more adept at translating complex questions into SQL queries. Nonetheless, the critical need for reliability in healthcare necessitates these models to accurately identify unanswerable questions or uncertain predictions, preventing misinformation. To address this problem, we present a self-training strategy using pseudo-labeled unanswerable questions to enhance the reliability of text-to-SQL models for EHRs. This approach includes a two-stage training process followed by a filtering method based on the token entropy and query execution. Our methodology’s effectiveness is validated by our top performance in the EHRSQL 2024 shared task, showcasing the potential to improve healthcare decision-making through more reliable text-to-SQL systems.
pdf
bib
abs
Prometheus-Vision: Vision-Language Model as a Judge for Fine-Grained Evaluation
Seongyun Lee
|
Seungone Kim
|
Sue Park
|
Geewook Kim
|
Minjoon Seo
Findings of the Association for Computational Linguistics: ACL 2024
Assessing long-form responses generated by Vision-Language Models (VLMs) is challenging. It not only requires checking whether the VLM follows the given instruction but also verifying whether the text output is properly grounded on the given image. Inspired by the recent approach of evaluating LMs with LMs, in this work, we propose to evaluate VLMs with VLMs. For this purpose, we present a new feedback dataset called the Perception Collection, encompassing 15K customized score rubrics that users might care about during assessment. Using the Perception Collection, we train Prometheus-Vision, the first open-source VLM evaluator model that can understand the user-defined score criteria during evaluation. Prometheus-Vision shows the highest Pearson correlation with human evaluators and GPT-4V among open-source models, showing its effectiveness for transparent and accessible evaluation of VLMs. We open-source our code, dataset, and model.
pdf
bib
abs
Volcano: Mitigating Multimodal Hallucination through Self-Feedback Guided Revision
Seongyun Lee
|
Sue Hyun Park
|
Yongrae Jo
|
Minjoon Seo
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Large multimodal models suffer from multimodal hallucination, where they provide incorrect responses misaligned with the given visual information. Recent works have conjectured that one of the reasons behind multimodal hallucination is due to the vision encoder failing to ground on the image properly. To mitigate this issue, we propose a novel approach that leverages self-feedback as visual cues. Building on this approach, we introduce Volcano, a multimodal self-feedback guided revision model. Volcano generates natural language feedback to its initial response based on the provided visual information and utilizes this feedback to self-revise its initial response. Volcano effectively reduces multimodal hallucination and achieves state-of-the-art on MMHal-Bench, POPE, and GAVIE. It also improves on general multimodal abilities and outperforms previous models on MM-Vet and MMBench. Through qualitative analysis, we show that Volcano’s feedback is properly grounded on the image than the initial response. This indicates that Volcano can provide itself with richer visual information through feedback generation, leading to self-correct hallucinations. We publicly release our model, data, and code at https://github.com/kaistAI/Volcanogithub.com/kaistAI/Volcano