Due to the significant time and effort required for handcrafting translations, most manga never leave the domestic Japanese market. Automatic manga translation is a promising potential solution. However, it is a budding and underdeveloped field and presents complexities even greater than those found in standard translation due to the need to effectively incorporate visual elements into the translation process to resolve ambiguities. In this work, we investigate to what extent multimodal large language models (LLMs) can provide effective manga translation, thereby assisting manga authors and publishers in reaching wider audiences. Specifically, we propose a methodology that leverages the vision component of multimodal LLMs to improve translation quality and evaluate the impact of translation unit size, context length, and propose a token efficient approach for manga translation. Moreover, we introduce a new evaluation dataset – the first parallel Japanese-Polish manga translation dataset – as part of a benchmark to be used in future research. Finally, we contribute an open-source software suite, enabling others to benchmark LLMs for manga translation. Our findings demonstrate that our proposed methods achieve state-of-the-art results for Japanese-English translation and set a new standard for Japanese-Polish.
This paper focuses on improving the performance of machine translation for manga (Japanese-style comics). In manga machine translation, text consists of a sequence of speech bubbles and each speech bubble is translated individually. However, each speech bubble itself does not contain sufficient information for translation. Therefore, previous work has proposed methods to use contextual information, such as the previous speech bubble, speech bubbles within the same scene, and corresponding scene images. In this research, we propose two new approaches to capture broader contextual information. Our first approach involves scene-based translation that considers the previous scene. The second approach considers broader context information, including details about the work, author, and manga genre. Through our experiments, we confirm that each of our methods improves translation quality, with the combination of both methods achieving the highest quality. Additionally, detailed analysis reveals the effect of zero-anaphora resolution in translation, such as supplying missing subjects not mentioned within a scene, highlighting the usefulness of longer contextual information in manga machine translation.
When reading a text, it is common to become stuck on unfamiliar words and phrases, such as polysemous words with novel senses, rarely used idioms, internet slang, or emerging entities. If we humans cannot figure out the meaning of those expressions from the immediate local context, we consult dictionaries for definitions or search documents or the web to find other global context to help in interpretation. Can machines help us do this work? Which type of context is more important for machines to solve the problem? To answer these questions, we undertake a task of describing a given phrase in natural language based on its local and global contexts. To solve this task, we propose a neural description model that consists of two context encoders and a description decoder. In contrast to the existing methods for non-standard English explanation [Ni+ 2017] and definition generation [Noraset+ 2017; Gadetsky+ 2018], our model appropriately takes important clues from both local and global contexts. Experimental results on three existing datasets (including WordNet, Oxford and Urban Dictionaries) and a dataset newly created from Wikipedia demonstrate the effectiveness of our method over previous work.
Chunks (or phrases) once played a pivotal role in machine translation. By using a chunk rather than a word as the basic translation unit, local (intra-chunk) and global (inter-chunk) word orders and dependencies can be easily modeled. The chunk structure, despite its importance, has not been considered in the decoders used for neural machine translation (NMT). In this paper, we propose chunk-based decoders for (NMT), each of which consists of a chunk-level decoder and a word-level decoder. The chunk-level decoder models global dependencies while the word-level decoder decides the local word order in a chunk. To output a target sentence, the chunk-level decoder generates a chunk representation containing global information, which the word-level decoder then uses as a basis to predict the words inside the chunk. Experimental results show that our proposed decoders can significantly improve translation performance in a WAT ‘16 English-to-Japanese translation task.
In this paper, we describe the team UT-IIS’s system and results for the WAT 2017 translation tasks. We further investigated several tricks including a novel technique for initializing embedding layers using only the parallel corpus, which increased the BLEU score by 1.28, found a practical large batch size of 256, and gained insights regarding hyperparameter settings. Ultimately, our system obtained a better result than the state-of-the-art system of WAT 2016. Our code is available on https://github.com/nem6ishi/wat17.