The limited generalization of coreference resolution (CR) models has been a major bottleneck in the task’s broad application. Prior work has identified annotation differences, especially for mention detection, as one of the main reasons for the generalization gap and proposed using additional annotated target domain data. Rather than relying on this additional annotation, we propose an alternative referential task, Major Entity Identification (MEI), where we: (a) assume the target entities to be specified in the input, and (b) limit the task to only the frequent entities. Through extensive experiments, we demonstrate that MEI models generalize well across domains on multiple datasets with supervised models and LLM-based few-shot prompting. Additionally, MEI fits the classification framework, which enables the use of robust and intuitive classification-based metrics. Finally, MEI is also of practical use as it allows a user to search for all mentions of a particular entity or a group of entities of interest.
We present an empirical study of adapting an existing pretrained text-to-text model for long-sequence inputs. Through a comprehensive study along three axes of the pretraining pipeline – model architecture, optimization objective, and pretraining corpus, we propose an effective recipe to build long-context models from existing short-context models. Specifically, we replace the full attention in transformers with pooling-augmented blockwise attention, and pretrain the model with a masked-span prediction task with spans of varying lengths. In terms of the pretraining corpus, we find that using randomly concatenated short-documents from a large open-domain corpus results in better performance than using existing long document corpora, which are typically limited in their domain coverage. With these findings, we build a long-context model that achieves competitive performance on long-text QA tasks and establishes the new state of the art on five long-text summarization datasets, often outperforming previous methods with larger model sizes.
A key feature of modern large language models (LLMs) is their ability to perform in-context learning, a prompting technique where query- answer demonstrations are shown before the final query. This allows for generalization to novel distributions at inference time where the LLM can learn new rules without parameter updates. However, the choice of demonstrations and their relationship to a particular query can have a profound impact on model accuracy, raising concerns about the true in-context generalization capabilities (Zhao et al., 2021). In this work, we explore the robustness of the in-context learning paradigm by focusing on entities. In particular, we seek to understand the robustness of LLM in-context learning with respect to named entity replacements. We discover a significant variance in downstream performance based on the choice of the named entities, across three popular reasoning tasks and two popular LLMs. Specifically, model accuracy on the test sets can fluctuate between -2.7 to +8.0 points depending on the choice of named entity replacements. Our analysis exposes the sensitivity of LLM in-context learning with respect to named entities, and offers a simple recipe to improve test performance by hyper-parameter tuning the named entities for a given dataset. Code and datasets for reproducing the results are publicly available.
Neural language models have been analyzed for their linguistic and extra-linguistic knowledge via probing. Of particular interest has been the following question: how much can a language model trained only on form learn about meaning? Recent work has demonstrated via probing classifiers that in the setting of simple procedural text, where by “meaning” we mean the underlying world state, language models have a non-trivial performance on world state tracking. However, our proposed evaluation based on model predictions shows differing results, suggesting that these models are either not capturing the world state or not using it. How do these results change if the model has access to the world state? We explore this alternate setting with access to the underlying world state only during training and investigate ways of “baking in” the state knowledge along with the primary task of language modeling. Our proposed approaches allow for state probing during inference simply via text prompts, avoiding any probing classifier machinery. In terms of performance, we show that baking in the state knowledge during training leads to significant improvements in state tracking performance and text generation quality,
While coreference resolution is defined independently of dataset domain, most models for performing coreference resolution do not transfer well to unseen domains. We consolidate a set of 8 coreference resolution datasets targeting different domains to evaluate the off-the-shelf performance of models. We then mix three datasets for training; even though their domain, annotation guidelines, and metadata differ, we propose a method for jointly training a single model on this heterogeneous data mixture by using data augmentation to account for annotation differences and sampling to balance the data quantities. We find that in a zero-shot setting, models trained on a single dataset transfer poorly while joint training yields improved overall performance, leading to better generalization in coreference resolution models. This work contributes a new benchmark for robust coreference resolution and multiple new state-of-the-art results.
Many natural language processing (NLP) tasks involve reasoning with textual spans, including question answering, entity recognition, and coreference resolution. While extensive research has focused on functional architectures for representing words and sentences, there is less work on representing arbitrary spans of text within sentences. In this paper, we conduct a comprehensive empirical evaluation of six span representation methods using eight pretrained language representation models across six tasks, including two tasks that we introduce. We find that, although some simple span representations are fairly reliable across tasks, in general the optimal span representation varies by task, and can also vary within different facets of individual tasks. We also find that the choice of span representation has a bigger impact with a fixed pretrained encoder than with a fine-tuned encoder.
We propose PeTra, a memory-augmented neural network designed to track entities in its memory slots. PeTra is trained using sparse annotation from the GAP pronoun resolution dataset and outperforms a prior memory model on the task while using a simpler architecture. We empirically compare key modeling choices, finding that we can simplify several aspects of the design of the memory module while retaining strong performance. To measure the people tracking capability of memory models, we (a) propose a new diagnostic evaluation based on counting the number of unique entities in text, and (b) conduct a small scale human evaluation to compare evidence of people tracking in the memory logs of PeTra relative to a previous approach. PeTra is highly effective in both evaluations, demonstrating its ability to track people in its memory despite being trained with limited annotation.
Long document coreference resolution remains a challenging task due to the large memory and runtime requirements of current models. Recent work doing incremental coreference resolution using just the global representation of entities shows practical benefits but requires keeping all entities in memory, which can be impractical for long documents. We argue that keeping all entities in memory is unnecessary, and we propose a memory-augmented neural network that tracks only a small bounded number of entities at a time, thus guaranteeing a linear runtime in length of document. We show that (a) the model remains competitive with models with high memory and computational requirements on OntoNotes and LitBank, and (b) the model learns an efficient memory management strategy easily outperforming a rule-based strategy
In conversational speech, the acoustic signal provides cues that help listeners disambiguate difficult parses. For automatically parsing spoken utterances, we introduce a model that integrates transcribed text and acoustic-prosodic features using a convolutional neural network over energy and pitch trajectories coupled with an attention-based recurrent neural network that accepts text and prosodic features. We find that different types of acoustic-prosodic features are individually helpful, and together give statistically significant improvements in parse and disfluency detection F1 scores over a strong text-only baseline. For this study with known sentence boundaries, error analyses show that the main benefit of acoustic-prosodic features is in sentences with disfluencies, attachment decisions are most improved, and transcription errors obscure gains from prosody.