Sinno Pan


2024

pdf bib
Sentiment Analysis in the Era of Large Language Models: A Reality Check
Wenxuan Zhang | Yue Deng | Bing Liu | Sinno Pan | Lidong Bing
Findings of the Association for Computational Linguistics: NAACL 2024

Sentiment analysis (SA) has been a long-standing research area in natural language processing. With the recent advent of large language models (LLMs), there is great potential for their employment on SA problems. However, the extent to which current LLMs can be leveraged for different sentiment analysis tasks remains unclear. This paper aims to provide a comprehensive investigation into the capabilities of LLMs in performing various sentiment analysis tasks, from conventional sentiment classification to aspect-based sentiment analysis and multifaceted analysis of subjective texts. We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets. Our study reveals that while LLMs demonstrate satisfactory performance in simpler tasks, they lag behind in more complex tasks requiring a deeper understanding of specific sentiment phenomena or structured sentiment information. However, LLMs significantly outperform SLMs in few-shot learning settings, suggesting their potential when annotation resources are limited. We also highlight the limitations of current evaluation practices in assessing LLMs’ SA abilities and propose a novel benchmark, SentiEval, for a more comprehensive and realistic evaluation. Data and code are available at https://github.com/DAMO-NLP-SG/LLM-Sentiment.

2023

pdf bib
Adapt in Contexts: Retrieval-Augmented Domain Adaptation via In-Context Learning
Quanyu Long | Wenya Wang | Sinno Pan
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) have showcased their capability with few-shot inference known as in-context learning. However, in-domain demonstrations are not always readily available in real scenarios, leading to cross-domain in-context learning. Besides, LLMs are still facing challenges in long-tail knowledge in unseen and unfamiliar domains. The above limitations demonstrate the necessity of Unsupervised Domain Adaptation (UDA). In this paper, we study the UDA problem under an in-context learning setting to adapt language models from the source domain to the target domain without any target labels. The core idea is to retrieve a subset of cross-domain elements that are the most similar to the query, and elicit language model to adapt in an in-context manner by learning both target domain distribution and the discriminative task signal simultaneously with the augmented cross-domain in-context examples. We devise different prompting and training strategies, accounting for different LM architectures to learn the target distribution via language modeling. With extensive experiments on Sentiment Analysis (SA) and Named Entity Recognition (NER) tasks, we thoroughly study the effectiveness of ICL for domain transfer and demonstrate significant improvements over baseline models.

pdf bib
SOUL: Towards Sentiment and Opinion Understanding of Language
Yue Deng | Wenxuan Zhang | Sinno Pan | Lidong Bing
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Sentiment analysis is a well-established natural language processing task, with sentiment polarity classification being one of its most popular and representative tasks. However, despite the success of pre-trained language models in this area, they often fall short of capturing the broader complexities of sentiment analysis. To address this issue, we propose a new task called Sentiment and Opinion Understanding of Language (SOUL). SOUL aims to evaluate sentiment understanding through two subtasks: Review Comprehension (RC) and Justification Generation (JG). RC seeks to validate statements that focus on subjective information based on a review text, while JG requires models to provide explanations for their sentiment predictions. To enable comprehensive evaluation, we annotate a new dataset comprising 15,028 statements from 3,638 reviews. Experimental results indicate that SOUL is a challenging task for both small and large language models, with a performance gap of up to 27% when compared to human performance. Furthermore, evaluations conducted with both human experts and GPT-4 highlight the limitations of the small language model in generating reasoning-based justifications. These findings underscore the challenging nature of the SOUL task for existing models, emphasizing the need for further advancements in sentiment analysis to address its complexities. The new dataset and code are available at https://github.com/DAMO-NLP-SG/SOUL.

2022

pdf bib
Domain Confused Contrastive Learning for Unsupervised Domain Adaptation
Quanyu Long | Tianze Luo | Wenya Wang | Sinno Pan
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

In this work, we study Unsupervised Domain Adaptation (UDA) in a challenging self-supervised approach. One of the difficulties is how to learn task discrimination in the absence of target labels. Unlike previous literature which directly aligns cross-domain distributions or leverages reverse gradient, we propose Domain Confused Contrastive Learning (DCCL), which can bridge the source and target domains via domain puzzles, and retain discriminative representations after adaptation. Technically, DCCL searches for a most domain-challenging direction and exquisitely crafts domain confused augmentations as positive pairs, then it contrastively encourages the model to pull representations towards the other domain, thus learning more stable and effective domain invariances. We also investigate whether contrastive learning necessarily helps with UDA when performing other data augmentations. Extensive experiments demonstrate that DCCL significantly outperforms baselines, further ablation study and analysis also show the effectiveness and availability of DCCL.

pdf bib
Deep Inductive Logic Reasoning for Multi-Hop Reading Comprehension
Wenya Wang | Sinno Pan
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multi-hop reading comprehension requires an ability to reason across multiple documents. On the one hand, deep learning approaches only implicitly encode query-related information into distributed embeddings which fail to uncover the discrete relational reasoning process to infer the correct answer. On the other hand, logic-based approaches provide interpretable rules to infer the target answer, but mostly work on structured data where entities and relations are well-defined. In this paper, we propose a deep-learning based inductive logic reasoning method that firstly extracts query-related (candidate-related) information, and then conducts logic reasoning among the filtered information by inducing feasible rules that entail the target relation. The reasoning process is accomplished via attentive memories with novel differentiable logic operators. To demonstrate the effectiveness of our model, we evaluate it on two reading comprehension datasets, namely WikiHop and MedHop.