In this paper we explore the task of modeling semi-structured object sequences; in particular, we focus our attention on the problem of developing a structure-aware input representation for such sequences. Examples of such data include user activity on websites, machine logs, and many others. This type of data is often represented as a sequence of sets of key-value pairs over time and can present modeling challenges due to an ever-increasing sequence length. We propose a two-part approach, which first considers each key independently and encodes a representation of its values over time; we then self-attend over these value-aware key representations to accomplish a downstream task. This allows us to operate on longer object sequences than existing methods. We introduce a novel shared-attention-head architecture between the two modules and present an innovative training schedule that interleaves the training of both modules with shared weights for some attention heads. Our experiments on multiple prediction tasks using real-world data demonstrate that our approach outperforms a unified network with hierarchical encoding, as well as other methods including a record-centric representation and a flattened representation of the sequence.
The paper presents the results of the Shared Task hosted by the Second DialDoc Workshop on Document-grounded Dialogue and Conversational Question Answering co-located at ACL 2022. The primary goal of this Shared Task is to build goal-oriented information-seeking conversation systems that are grounded in the domain documents, where each dialogue could correspond to multiple subtasks that are based on different documents. The task is to generate agent responses in natural language given the dialogue and document contexts. There are two task settings and leaderboards based on (1) the same sets of domains (SEEN) and (2) one unseen domain (UNSEEN). There are over 20 teams participating in Dev Phase and 8 teams participating in both Dev and Test Phases. Multiple submissions significantly outperform the baseline. The best-performing system achieves 52.06 F1 and the total of 191.30 on the SEEN task; and 34.65 F1 and the total of 130.79 on the UNSEEN task.
We introduce doc2dial, a new dataset of goal-oriented dialogues that are grounded in the associated documents. Inspired by how the authors compose documents for guiding end users, we first construct dialogue flows based on the content elements that corresponds to higher-level relations across text sections as well as lower-level relations between discourse units within a section. Then we present these dialogue flows to crowd contributors to create conversational utterances. The dataset includes over 4500 annotated conversations with an average of 14 turns that are grounded in over 450 documents from four domains. Compared to the prior document-grounded dialogue datasets, this dataset covers a variety of dialogue scenes in information-seeking conversations. For evaluating the versatility of the dataset, we introduce multiple dialogue modeling tasks and present baseline approaches.
Customer support agents play a crucial role as an interface between an organization and its end-users. We propose CAIRAA: Conversational Approach to Information Retrieval for Agent Assistance, to reduce the cognitive workload of support agents who engage with users through conversation systems. CAIRAA monitors an evolving conversation and recommends both responses and URLs of documents the agent can use in replies to their client. We combine traditional information retrieval (IR) approaches with more recent Deep Learning (DL) models to ensure high accuracy and efficient run-time performance in the deployed system. Here, we describe the CAIRAA system and demonstrate its effectiveness in a pilot study via a short video.