Subhendu Khatuya
2024
Parameter-Efficient Instruction Tuning of Large Language Models For Extreme Financial Numeral Labelling
Subhendu Khatuya
|
Rajdeep Mukherjee
|
Akash Ghosh
|
Manjunath Hegde
|
Koustuv Dasgupta
|
Niloy Ganguly
|
Saptarshi Ghosh
|
Pawan Goyal
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
We study the problem of automatically annotating relevant numerals (GAAP metrics) occurring in the financial documents with their corresponding XBRL tags. Different from prior works, we investigate the feasibility of solving this extreme classification problem using a generative paradigm through instruction tuning of Large Language Models (LLMs). To this end, we leverage metric metadata informationto frame our target outputs while proposing a parameter efficient solution for the task using LoRA. We perform experiments on two recently released financial numeric labeling datasets. Our proposed model, **FLAN-FinXC**, achieves new state-of-the-art performances on both the datasets, outperforming several strong baselines. We explain the better scores of our proposed model by demonstrating its capability for zero-shot as well as the least frequently occurring tags. Also, even when we fail to predict the XBRL tags correctly, our generated output has substantial overlap with the ground-truth in majority of the cases.
2023
Financial Numeric Extreme Labelling: A dataset and benchmarking
Soumya Sharma
|
Subhendu Khatuya
|
Manjunath Hegde
|
Afreen Shaikh
|
Koustuv Dasgupta
|
Pawan Goyal
|
Niloy Ganguly
Findings of the Association for Computational Linguistics: ACL 2023
The U.S. Securities and Exchange Commission (SEC) mandates all public companies to file periodic financial statements that should contain numerals annotated with a particular label from a taxonomy. In this paper, we formulate the task of automating the assignment of a label to a particular numeral span in a sentence from an extremely large label set. Towards this task, we release a dataset, Financial Numeric Extreme Labelling (FNXL), annotated with 2,794 labels. We benchmark the performance of the FNXL dataset by formulating the task as (a) a sequence labelling problem and (b) a pipeline with span extraction followed by Extreme Classification. Although the two approaches perform comparably, the pipeline solution provides a slight edge for the least frequent labels.
Search
Fix data
Co-authors
- Koustuv Dasgupta 2
- Niloy Ganguly 2
- Pawan Goyal 2
- Manjunath Hegde 2
- Akash Ghosh 1
- show all...