2024
pdf
bib
abs
Overview of the 9th Social Media Mining for Health Applications (#SMM4H) Shared Tasks at ACL 2024 – Large Language Models and Generalizability for Social Media NLP
Dongfang Xu
|
Guillermo Garcia
|
Lisa Raithel
|
Philippe Thomas
|
Roland Roller
|
Eiji Aramaki
|
Shoko Wakamiya
|
Shuntaro Yada
|
Pierre Zweigenbaum
|
Karen O’Connor
|
Sai Samineni
|
Sophia Hernandez
|
Yao Ge
|
Swati Rajwal
|
Sudeshna Das
|
Abeed Sarker
|
Ari Klein
|
Ana Schmidt
|
Vishakha Sharma
|
Raul Rodriguez-Esteban
|
Juan Banda
|
Ivan Amaro
|
Davy Weissenbacher
|
Graciela Gonzalez-Hernandez
Proceedings of The 9th Social Media Mining for Health Research and Applications (SMM4H 2024) Workshop and Shared Tasks
For the past nine years, the Social Media Mining for Health Applications (#SMM4H) shared tasks have promoted community-driven development and evaluation of advanced natural language processing systems to detect, extract, and normalize health-related information in publicly available user-generated content. This year, #SMM4H included seven shared tasks in English, Japanese, German, French, and Spanish from Twitter, Reddit, and health forums. A total of 84 teams from 22 countries registered for #SMM4H, and 45 teams participated in at least one task. This represents a growth of 180% and 160% in registration and participation, respectively, compared to the last iteration. This paper provides an overview of the tasks and participating systems. The data sets remain available upon request, and new systems can be evaluated through the post-evaluation phase on CodaLab.
pdf
bib
abs
Unveiling Voices: Identification of Concerns in a Social Media Breast Cancer Cohort via Natural Language Processing
Swati Rajwal
|
Avinash Kumar Pandey
|
Zhishuo Han
|
Abeed Sarker
Proceedings of the First Workshop on Patient-Oriented Language Processing (CL4Health) @ LREC-COLING 2024
We leveraged a dataset of ∼1.5 million Twitter (now X) posts to develop a framework for analyzing breast cancer (BC) patients’ concerns and possible reasons for treatment discontinuation. Our primary objectives were threefold: (1) to curate and collect data from a BC cohort; (2) to identify topics related to uncertainty/concerns in BC-related posts; and (3) to conduct a sentiment intensity analysis of posts to identify and analyze negatively polarized posts. RoBERTa outperformed other models with a micro-averaged F1 score of 0.894 and a macro-averaged F1 score of 0.853 for (1). For (2), we used GPT-4 and BERTopic, and qualitatively analyzed posts under relevant topics. For (3), sentiment intensity analysis of posts followed by qualitative analyses shed light on potential reasons behind treatment discontinuation. Our work demonstrates the utility of social media mining to discover BC patient concerns. Information derived from the cohort data may help design strategies in the future for increasing treatment compliance.
pdf
bib
abs
EM_Mixers at MEDIQA-CORR 2024: Knowledge-Enhanced Few-Shot In-Context Learning for Medical Error Detection and Correction
Swati Rajwal
|
Eugene Agichtein
|
Abeed Sarker
Proceedings of the 6th Clinical Natural Language Processing Workshop
This paper describes our submission to MEDIQA-CORR 2024 shared task for automatic identification and correction of medical errors in a given clinical text. We report results from two approaches: the first uses a few-shot in-context learning (ICL) with a Large Language Model (LLM) and the second approach extends the idea by using a knowledge-enhanced few-shot ICL approach. We used Azure OpenAI GPT-4 API as the LLM and Wikipedia as the external knowledge source. We report evaluation metrics (accuracy, ROUGE, BERTScore, BLEURT) across both approaches for validation and test datasets. Of the two approaches implemented, our experimental results show that the knowledge-enhanced few-shot ICL approach with GPT-4 performed better with error flag (subtask A) and error sentence detection (subtask B) with accuracies of 68% and 64%, respectively on the test dataset. These results positioned us fourth in subtask A and second in subtask B, respectively in the shared task.