Taiqiang Wu


2025

pdf bib
Edge-free but Structure-aware: Prototype-Guided Knowledge Distillation from GNNs to MLPs
Taiqiang Wu | Zhe Zhao | Jiahao Wang | Xingyu Bai | Lei Wang | Ngai Wong | Yujiu Yang
Proceedings of the 31st International Conference on Computational Linguistics

Distilling high-accuracy Graph Neural Networks (GNNs) to low-latency multilayer perceptrons (MLPs) on graph tasks has become a hot research topic. However, conventional MLP learning relies almost exclusively on graph nodes and fails to effectively capture the graph structural information. Previous methods address this issue by processing graph edges into extra inputs for MLPs, but such graph structures may be unavailable for various scenarios. To this end, we propose Prototype-Guided Knowledge Distillation (PGKD), which does not require graph edges (edge-free setting) yet learns structure-aware MLPs. Our insight is to distill graph structural information from GNNs. Specifically, we first employ the class prototypes to analyze the impact of graph structures on GNN teachers, and then design two losses to distill such information from GNNs to MLPs. Experimental results on popular graph benchmarks demonstrate the effectiveness and robustness of the proposed PGKD.

pdf bib
Rethinking Kullback-Leibler Divergence in Knowledge Distillation for Large Language Models
Taiqiang Wu | Chaofan Tao | Jiahao Wang | Runming Yang | Zhe Zhao | Ngai Wong
Proceedings of the 31st International Conference on Computational Linguistics

Kullback-Leiber divergence has been widely used in Knowledge Distillation (KD) to compress Large Language Models (LLMs). Contrary to prior assertions that reverse Kullback-Leibler (RKL) divergence is mode-seeking and thus preferable over the mean-seeking forward Kullback-Leibler (FKL) divergence, this study empirically and theoretically demonstrates that neither mode-seeking nor mean-seeking properties manifest in KD for LLMs. Instead, RKL and FKL are found to share the same optimization objective and both converge after a sufficient number of epochs. However, due to practical constraints, LLMs are seldom trained for such an extensive number of epochs. Meanwhile, we further find that RKL focuses on the tail part of the distributions, while FKL focuses on the head part at the beginning epochs. Consequently, we propose a simple yet effective Adaptive Kullback-Leiber (AKL) divergence method, which adaptively allocates weights to combine FKL and RKL. Metric-based and GPT-4-based evaluations demonstrate that the proposed AKL outperforms the baselines across various tasks and improves the diversity and quality of generated responses.

2024

pdf bib
Mixture-of-Subspaces in Low-Rank Adaptation
Taiqiang Wu | Jiahao Wang | Zhe Zhao | Ngai Wong
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

In this paper, we introduce a subspace-inspired Low-Rank Adaptation (LoRA) method, which is computationally efficient, easy to implement, and readily applicable to large language, multimodal, and diffusion models. Initially, we equivalently decompose the weights of LoRA into two subspaces, and find that simply mixing them can enhance performance. To study such a phenomenon, we revisit it through a fine-grained subspace lens, showing that such modification is equivalent to employing a fixed mixer to fuse the subspaces. To be more flexible, we jointly learn the mixer with the original LoRA weights, and term the method as Mixture-of-Subspaces LoRA (MoSLoRA). MoSLoRA consistently outperforms LoRA on tasks in different modalities, including commonsense reasoning, visual instruction tuning, and subject-driven text-to-image generation, demonstrating its effectiveness and robustness.

pdf bib
Weight-Inherited Distillation for Task-Agnostic BERT Compression
Taiqiang Wu | Cheng Hou | Shanshan Lao | Jiayi Li | Ngai Wong | Zhe Zhao | Yujiu Yang
Findings of the Association for Computational Linguistics: NAACL 2024

Knowledge Distillation (KD) is a predominant approach for BERT compression.Previous KD-based methods focus on designing extra alignment losses for the student model to mimic the behavior of the teacher model.These methods transfer the knowledge in an indirect way.In this paper, we propose a novel Weight-Inherited Distillation (WID), which directly transfers knowledge from the teacher.WID does not require any additional alignment loss and trains a compact student by inheriting the weights, showing a new perspective of knowledge distillation.Specifically, we design the row compactors and column compactors as mappings and then compress the weights via structural re-parameterization.Experimental results on the GLUE and SQuAD benchmarks show that WID outperforms previous state-of-the-art KD-based baselines.Further analysis indicates that WID can also learn the attention patterns from the teacher model without any alignment loss on attention distributions.The code is available at https://github.com/wutaiqiang/WID-NAACL2024.

2023

pdf bib
TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities
Zhe Zhao | Yudong Li | Cheng Hou | Jing Zhao | Rong Tian | Weijie Liu | Yiren Chen | Ningyuan Sun | Haoyan Liu | Weiquan Mao | Han Guo | Weigang Gou | Taiqiang Wu | Tao Zhu | Wenhang Shi | Chen Chen | Shan Huang | Sihong Chen | Liqun Liu | Feifei Li | Xiaoshuai Chen | Xingwu Sun | Zhanhui Kang | Xiaoyong Du | Linlin Shen | Kimmo Yan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

Recently, the success of pre-training in text domain has been fully extended to vision, audio, and cross-modal scenarios. The proposed pre-training models of different modalities are showing a rising trend of homogeneity in their model structures, which brings the opportunity to implement different pre-training models within a uniform framework. In this paper, we present TencentPretrain, a toolkit supporting pre-training models of different modalities. The core feature of TencentPretrain is the modular design. The toolkit uniformly divides pre-training models into 5 components: embedding, encoder, target embedding, decoder, and target. As almost all of common modules are provided in each component, users can choose the desired modules from different components to build a complete pre-training model. The modular design enables users to efficiently reproduce existing pre-training models or build brand-new one. We test the toolkit on text, vision, and audio benchmarks and show that it can match the performance of the original implementations.

2022

pdf bib
Multi-stage Distillation Framework for Cross-Lingual Semantic Similarity Matching
Kunbo Ding | Weijie Liu | Yuejian Fang | Zhe Zhao | Qi Ju | Xuefeng Yang | Rong Tian | Zhu Tao | Haoyan Liu | Han Guo | Xingyu Bai | Weiquan Mao | Yudong Li | Weigang Guo | Taiqiang Wu | Ningyuan Sun
Findings of the Association for Computational Linguistics: NAACL 2022

Previous studies have proved that cross-lingual knowledge distillation can significantly improve the performance of pre-trained models for cross-lingual similarity matching tasks. However, the student model needs to be large in this operation. Otherwise, its performance will drop sharply, thus making it impractical to be deployed to memory-limited devices. To address this issue, we delve into cross-lingual knowledge distillation and propose a multi-stage distillation framework for constructing a small-size but high-performance cross-lingual model. In our framework, contrastive learning, bottleneck, and parameter recurrent strategies are delicately combined to prevent performance from being compromised during the compression process. The experimental results demonstrate that our method can compress the size of XLM-R and MiniLM by more than 50%, while the performance is only reduced by about 1%.