Tianhao Hu
2024
Adversarial Preference Optimization: Enhancing Your Alignment via RM-LLM Game
Pengyu Cheng
|
Yifan Yang
|
Jian Li
|
Yong Dai
|
Tianhao Hu
|
Peixin Cao
|
Nan Du
|
Xiaolong Li
Findings of the Association for Computational Linguistics: ACL 2024
Human preference alignment is essential to improve the interaction quality of large language models (LLMs). Existing alignment methods depend on manually annotated preference data to guide the LLM optimization directions. However, continuously updating LLMs for alignment raises a distribution gap between model-generated samples and human-annotated responses, hindering training effectiveness. To mitigate this issue, previous methods require additional preference annotation on newly generated samples to adapt to the shifted distribution, which consumes a large amount of annotation resources. Targeting more efficient human preference optimization, we propose an Adversarial Preference Optimization (APO) framework, in which the LLM and the reward model update alternatively via a min-max game. Through adversarial training, the reward model can adapt to the shifted generation distribution of the LLM without any additional annotation. With comprehensive experiments, we find the proposed adversarial training framework further enhances existing alignment baselines in terms of LLM helpfulness and harmlessness. The code is at https://github.com/Linear95/APO.
On Diversified Preferences of Large Language Model Alignment
Dun Zeng
|
Yong Dai
|
Pengyu Cheng
|
Longyue Wang
|
Tianhao Hu
|
Wanshun Chen
|
Nan Du
|
Zenglin Xu
Findings of the Association for Computational Linguistics: EMNLP 2024
Aligning large language models (LLMs) with human preferences has been recognized as the key to improving LLMs’ interaction quality. However, in this pluralistic world, human preferences can be diversified due to annotators’ different tastes, which hinders the effectiveness of LLM alignment methods. This paper presents the first quantitative analysis of the experimental scaling law for reward models with varying sizes, from 1.3 billion to 7 billion parameters, trained with human feedback exhibiting diverse preferences. Our analysis reveals that the impact of diversified human preferences depends on both model size and data size. Larger models with sufficient capacity mitigate the negative effects of diverse preferences, while smaller models struggle to accommodate them. To mitigate the impact of diverse preferences, we introduce a new metric, Expected Calibration Error (ECE), to evaluate RMs and show their obvious positive correlation with the alignment performance of LLMs. Furthermore, we propose a Multi-Objective Reward learning method (MORE) to enhance the calibration performance of RMs on shared preferences. Through experiments on four models and five human preference datasets, we find the calibration error can be adopted as a key metric for evaluating RMs and MORE can obtain superior alignment performance.
Search
Fix data
Co-authors
- Pengyu Cheng 2
- Yong Dai 2
- Nan Du 2
- Peixin Cao 1
- Wanshun Chen 1
- show all...