Tobias Hecking
2024
Style Vectors for Steering Generative Large Language Models
Kai Konen
|
Sophie Jentzsch
|
Diaoulé Diallo
|
Peer Schütt
|
Oliver Bensch
|
Roxanne El Baff
|
Dominik Opitz
|
Tobias Hecking
Findings of the Association for Computational Linguistics: EACL 2024
This research explores strategies for steering the output of large language models (LLMs) towards specific styles, such as sentiment, emotion, or writing style, by adding style vectors to the activations of hidden layers during text generation. We show that style vectors can be simply computed from recorded layer activations for input texts in a specific style in contrast to more complex training-based approaches. Through a series of experiments, we demonstrate the effectiveness of activation engineering using such style vectors to influence the style of generated text in a nuanced and parameterisable way, distinguishing it from prompt engineering. The presented research constitutes a significant step towards developing more adaptive and effective AI-empowered interactive systems.
2023
Corpus Annotation Graph Builder (CAG): An Architectural Framework to Create and Annotate a Multi-source Graph
Roxanne El Baff
|
Tobias Hecking
|
Andreas Hamm
|
Jasper W. Korte
|
Sabine Bartsch
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations
Graphs are a natural representation of complex data as their structure allows users to discover (often implicit) relations among the nodes intuitively. Applications build graphs in an ad-hoc fashion, usually tailored to specific use cases, limiting their reusability. To account for this, we present the Corpus Annotation Graph (CAG) architectural framework based on a create-and-annotate pattern that enables users to build uniformly structured graphs from diverse data sources and extend them with automatically extracted annotations (e.g., named entities, topics). The resulting graphs can be used for further analyses across multiple downstream tasks (e.g., node classification). Code and resources are publicly available on GitHub, and downloadable via PyPi with the command pip install cag.
Search
Co-authors
- Roxanne El Baff 2
- Andreas Hamm 1
- Jasper W. Korte 1
- Sabine Bartsch 1
- Kai Konen 1
- show all...