Wenyu Chen


2024

pdf bib
Beyond Single-Event Extraction: Towards Efficient Document-Level Multi-Event Argument Extraction
Wanlong Liu | Li Zhou | DingYi Zeng | Yichen Xiao | Shaohuan Cheng | Chen Zhang | Grandee Lee | Malu Zhang | Wenyu Chen
Findings of the Association for Computational Linguistics ACL 2024

Recent mainstream event argument extraction methods process each event in isolation, resulting in inefficient inference and ignoring the correlations among multiple events. To address these limitations, here we propose a multiple-event argument extraction model DEEIA (Dependency-guided Encoding and Event-specific Information Aggregation), capable of extracting arguments from all events within a document simultaneously. The proposed DEEIA model employs a multi-event prompt mechanism, comprising DE and EIA modules. The DE module is designed to improve the correlation between prompts and their corresponding event contexts, whereas the EIA module provides event-specific information to improve contextual understanding. Extensive experiments show that our method achieves new state-of-the-art performance on four public datasets (RAMS, WikiEvents, MLEE, and ACE05), while significantly saving the inference time compared to the baselines. Further analyses demonstrate the effectiveness of the proposed modules.

2023

pdf bib
Adaptive Textual Label Noise Learning based on Pre-trained Models
Shaohuan Cheng | Wenyu Chen | Fu Mingsheng | Xuanting Xie | Hong Qu
Findings of the Association for Computational Linguistics: EMNLP 2023

The label noise in real-world scenarios is unpredictable and can even be a mixture of different types of noise. To meet this challenge, we develop an adaptive textual label noise learning framework based on pre-trained models, which consists of an adaptive warm-up stage and a hybrid training stage. Specifically, an early stopping method, relying solely on the training set, is designed to dynamically terminate the warm-up process based on the model’s fit level to different noise scenarios. The hybrid training stage incorporates several generalization strategies to gradually correct mislabeled instances, thereby making better use of noisy data. Experiments on multiple datasets demonstrate that our approach performs comparably or even surpasses the state-of-the-art methods in various noise scenarios, including scenarios with the mixture of multiple types of noise.

pdf bib
Cultural Compass: Predicting Transfer Learning Success in Offensive Language Detection with Cultural Features
Li Zhou | Antonia Karamolegkou | Wenyu Chen | Daniel Hershcovich
Findings of the Association for Computational Linguistics: EMNLP 2023

The increasing ubiquity of language technology necessitates a shift towards considering cultural diversity in the machine learning realm, particularly for subjective tasks that rely heavily on cultural nuances, such as Offensive Language Detection (OLD). Current understanding underscores that these tasks are substantially influenced by cultural values, however, a notable gap exists in determining if cultural features can accurately predict the success of cross-cultural transfer learning for such subjective tasks. Addressing this, our study delves into the intersection of cultural features and transfer learning effectiveness. The findings reveal that cultural value surveys indeed possess a predictive power for cross-cultural transfer learning success in OLD tasks, and that it can be further improved using offensive word distance. Based on these results, we advocate for the integration of cultural information into datasets. Additionally, we recommend leveraging data sources rich in cultural information, such as surveys, to enhance cultural adaptability. Our research signifies a step forward in the quest for more inclusive, culturally sensitive language technologies.