Wing-Lam Mok


2023

pdf bib
Improving Bias Mitigation through Bias Experts in Natural Language Understanding
Eojin Jeon | Mingyu Lee | Juhyeong Park | Yeachan Kim | Wing-Lam Mok | SangKeun Lee
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Biases in the dataset often enable the model to achieve high performance on in-distribution data, while poorly performing on out-of-distribution data. To mitigate the detrimental effect of the bias on the networks, previous works have proposed debiasing methods that down-weight the biased examples identified by an auxiliary model, which is trained with explicit bias labels. However, finding a type of bias in datasets is a costly process. Therefore, recent studies have attempted to make the auxiliary model biased without the guidance (or annotation) of bias labels, by constraining the model’s training environment or the capability of the model itself. Despite the promising debiasing results of recent works, the multi-class learning objective, which has been naively used to train the auxiliary model, may harm the bias mitigation effect due to its regularization effect and competitive nature across classes. As an alternative, we propose a new debiasing framework that introduces binary classifiers between the auxiliary model and the main model, coined bias experts. Specifically, each bias expert is trained on a binary classification task derived from the multi-class classification task via the One-vs-Rest approach. Experimental results demonstrate that our proposed strategy improves the bias identification ability of the auxiliary model. Consequently, our debiased model consistently outperforms the state-of-the-art on various challenge datasets.

pdf bib
SMoP: Towards Efficient and Effective Prompt Tuning with Sparse Mixture-of-Prompts
Joon-Young Choi | Junho Kim | Jun-Hyung Park | Wing-Lam Mok | SangKeun Lee
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Prompt tuning has emerged as a successful parameter-efficient alternative to the full fine-tuning of language models. However, prior works on prompt tuning often utilize long soft prompts of up to 100 tokens to improve performance, overlooking the inefficiency associated with extended inputs. In this paper, we propose a novel prompt tuning method SMoP (Sparse Mixture-of-Prompts) that utilizes short soft prompts for efficient training and inference while maintaining performance gains typically induced from longer soft prompts. To achieve this, SMoP employs a gating mechanism to train multiple short soft prompts specialized in handling different subsets of the data, providing an alternative to relying on a single long soft prompt to cover the entire data. Experimental results demonstrate that SMoP outperforms baseline methods while reducing training and inference costs. We release our code at https://github.com/jyjohnchoi/SMoP.

pdf bib
Client-Customized Adaptation for Parameter-Efficient Federated Learning
Yeachan Kim | Junho Kim | Wing-Lam Mok | Jun-Hyung Park | SangKeun Lee
Findings of the Association for Computational Linguistics: ACL 2023

Despite the versatility of pre-trained language models (PLMs) across domains, their large memory footprints pose significant challenges in federated learning (FL), where the training model has to be distributed between a server and clients. One potential solution to bypass such constraints might be the use of parameter-efficient fine-tuning (PEFT) in the context of FL. However, we have observed that typical PEFT tends to severely suffer from heterogeneity among clients in FL scenarios, resulting in unstable and slow convergence. In this paper, we propose Client-Customized Adaptation (C2A), a novel hypernetwork-based FL framework that generates client-specific adapters by conditioning the client information. With the effectiveness of the hypernetworks in generating customized weights through learning to adopt the different characteristics of inputs, C2A can maximize the utility of shared model parameters while minimizing the divergence caused by client heterogeneity. To verify the efficacy of C2A, we perform extensive evaluations on FL scenarios involving heterogeneity in label and language distributions. Comprehensive evaluation results clearly support the superiority of C2A in terms of both efficiency and effectiveness in FL scenarios.

2022

pdf bib
Tutoring Helps Students Learn Better: Improving Knowledge Distillation for BERT with Tutor Network
Junho Kim | Jun-Hyung Park | Mingyu Lee | Wing-Lam Mok | Joon-Young Choi | SangKeun Lee
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Pre-trained language models have achieved remarkable successes in natural language processing tasks, coming at the cost of increasing model size. To address this issue, knowledge distillation (KD) has been widely applied to compress language models. However, typical KD approaches for language models have overlooked the difficulty of training examples, suffering from incorrect teacher prediction transfer and sub-efficient training. In this paper, we propose a novel KD framework, Tutor-KD, which improves the distillation effectiveness by controlling the difficulty of training examples during pre-training. We introduce a tutor network that generates samples that are easy for the teacher but difficult for the student, with training on a carefully designed policy gradient method. Experimental results show that Tutor-KD significantly and consistently outperforms the state-of-the-art KD methods with variously sized student models on the GLUE benchmark, demonstrating that the tutor can effectively generate training examples for the student.