Winson Chen


2024

pdf bib
Active Listening: Personalized Question Generation in Open-Domain Social Conversation with User Model Based Prompting
Kevin Bowden | Yue Fan | Winson Chen | Wen Cui | Davan Harrison | Xin Eric Wang | Marilyn Walker
Findings of the Association for Computational Linguistics: EMNLP 2024

Large language models (LLMs) capable of casual conversation have recently become widely available. We hypothesize that users of conversational systems want a more personalized experience, and existing work shows that users are highly receptive to personalized questions (PQs). Question Generation tasks, however, focus on factual questions from textual excerpts. To create a PQ generator, we first identify over 400 real user interests by anonymously aggregating ~39K user models. We then populate prompt templates with these 400 interests and use an LLM to generate PQs customized to user interests. The result is PerQs, a novel corpus of ~19K question/answer pairs. We evaluate PerQs at scale in the unique context of the Alexa Prize. Our results show significant positive effects on perceived conversation quality. We then fine-tune, deploy, and evaluate PerQy, a neural model that generates PQs in real-time. When evaluated against several competitive LLM baselines, PerQy produced the most natural and engaging responses.

2023

pdf bib
Aerial Vision-and-Dialog Navigation
Yue Fan | Winson Chen | Tongzhou Jiang | Chun Zhou | Yi Zhang | Xin Wang
Findings of the Association for Computational Linguistics: ACL 2023

The ability to converse with humans and follow natural language commands is crucial for intelligent unmanned aerial vehicles (a.k.a. drones). It can relieve people’s burden of holding a controller all the time, allow multitasking, and make drone control more accessible for people with disabilities or with their hands occupied. To this end, we introduce Aerial Vision-and-Dialog Navigation (AVDN), to navigate a drone via natural language conversation. We build a drone simulator with a continuous photorealistic environment and collect a new AVDN dataset of over 3k recorded navigation trajectories with asynchronous human-human dialogs between commanders and followers. The commander provides initial navigation instruction and further guidance by request, while the follower navigates the drone in the simulator and asks questions when needed. During data collection, followers’ attention on the drone’s visual observation is also recorded. Based on the AVDN dataset, we study the tasks of aerial navigation from (full) dialog history and propose an effective Human Attention Aided Transformer model (HAA-Transformer), which learns to predict both navigation waypoints and human attention.