To effectively use large language models (LLMs) for real-world queries, it is imperative that they generalize to the long-tail distribution, i.e. rare examples where models exhibit low confidence. In this work, we take the first step towards evaluating LLMs in the long-tail distribution of inferential knowledge. We exemplify long-tail evaluation on the Natural Language Inference task. First, we introduce Logic-Induced-Knowledge-Search (LINK), a systematic long-tail data generation framework, to obtain factually-correct yet long-tail inferential statements. LINK uses variable-wise prompting grounded on symbolic rules to seek low-confidence statements while ensuring factual correctness. We then use LINK to curate Logic-Induced-Long-Tail (LINT), a large-scale long-tail inferential knowledge dataset that contains 108K statements spanning four domains. We evaluate popular LLMs on LINT; we find that state-of-the-art LLMs show significant performance drop (21% relative drop for GPT4) on long-tail data as compared to on head distribution data, and smaller models show even more generalization weakness. These results further underscore the necessity of long-tail evaluation in developing generalizable LLMs.
Generating free-text rationales is among the emergent capabilities of Large Language Models (LLMs). These rationales have been found to enhance LLM performance across various NLP tasks. Recently, there has been growing interest in using these rationales to provide insights for various important downstream tasks. In this paper, we analyze generated free-text rationales in tasks with subjective answers, emphasizing the importance of rationalization in such scenarios. We focus on pairwise argument ranking, a highly subjective task with significant potential for real-world applications, such as debate assistance. We evaluate the persuasiveness of rationales generated by nine LLMs to support their subjective choices. Our findings suggest that open-source LLMs, particularly Llama2-70B-chat, are capable of providing highly persuasive rationalizations, surpassing even GPT models. Additionally, our experiments demonstrate that the persuasiveness of the generated rationales can be enhanced by guiding their persuasive elements through prompting or self-refinement techniques.
Language models (LMs) trained on large amounts of data have shown impressive performance on many NLP tasks under the zero-shot and few-shot setup. Here we aim to better understand the extent to which such models learn commonsense knowledge — a critical component of many NLP applications. We conduct a systematic and rigorous zero-shot and few-shot commonsense evaluation of large pre-trained LMs, where we: (i) carefully control for the LMs’ ability to exploit potential surface cues and annotation artefacts, and (ii) account for variations in performance that arise from factors that are not related to commonsense knowledge. Our findings highlight the limitations of pre-trained LMs in acquiring commonsense knowledge without task-specific supervision; furthermore, using larger models or few-shot evaluation is insufficient to achieve human-level commonsense performance.
Knowledge bases often consist of facts which are harvested from a variety of sources, many of which are noisy and some of which conflict, resulting in a level of uncertainty for each triple. Knowledge bases are also often incomplete, prompting the use of embedding methods to generalize from known facts, however, existing embedding methods only model triple-level uncertainty, and reasoning results lack global consistency. To address these shortcomings, we propose BEUrRE, a novel uncertain knowledge graph embedding method with calibrated probabilistic semantics. BEUrRE models each entity as a box (i.e. axis-aligned hyperrectangle) and relations between two entities as affine transforms on the head and tail entity boxes. The geometry of the boxes allows for efficient calculation of intersections and volumes, endowing the model with calibrated probabilistic semantics and facilitating the incorporation of relational constraints. Extensive experiments on two benchmark datasets show that BEUrRE consistently outperforms baselines on confidence prediction and fact ranking due to its probabilistic calibration and ability to capture high-order dependencies among facts.
Natural Language Inference (NLI) has garnered significant attention in recent years; however, the promise of applying NLI breakthroughs to other downstream NLP tasks has remained unfulfilled. In this work, we use the multiple-choice reading comprehension (MCRC) and checking factual correctness of textual summarization (CFCS) tasks to investigate potential reasons for this. Our findings show that: (1) the relatively shorter length of premises in traditional NLI datasets is the primary challenge prohibiting usage in downstream applications (which do better with longer contexts); (2) this challenge can be addressed by automatically converting resource-rich reading comprehension datasets into longer-premise NLI datasets; and (3) models trained on the converted, longer-premise datasets outperform those trained using short-premise traditional NLI datasets on downstream tasks primarily due to the difference in premise lengths.
Learning representations of entities and relations in structured knowledge bases is an active area of research, with much emphasis placed on choosing the appropriate geometry to capture the hierarchical structures exploited in, for example, isa or haspart relations. Box embeddings (Vilnis et al., 2018; Li et al., 2019; Dasgupta et al., 2020), which represent concepts as n-dimensional hyperrectangles, are capable of embedding hierarchies when training on a subset of the transitive closure. In Patel et al., (2020), the authors demonstrate that only the transitive reduction is required and further extend box embeddings to capture joint hierarchies by augmenting the graph with new nodes. While it is possible to represent joint hierarchies with this method, the parameters for each hierarchy are decoupled, making generalization between hierarchies infeasible. In this work, we introduce a learned box-to-box transformation that respects the structure of each hierarchy. We demonstrate that this not only improves the capability of modeling cross-hierarchy compositional edges but is also capable of generalizing from a subset of the transitive reduction.