In light of the inherent entailment relations between images and text, embedding point vectors in hyperbolic space has been employed to leverage its hierarchical modeling advantages for visual semantic representation learning. However, point vector embeddings struggle to address semantic uncertainty, where an image may have multiple interpretations, and text may correspond to different images—a challenge especially prevalent in the medical domain. Therefor, we propose HYDEN, a novel hyperbolic density embedding based image-text representation learning approach tailored for specific medical domain data. This method integrates text-aware local features with global features from images, mapping image-text features to density features in hyperbolic space via using hyperbolic pseudo-Gaussian distributions. An encapsulation loss function is employed to model the partial order relations between image-text density distributions. Experimental results demonstrate the interpretability of our approach and its superior performance compared to the baseline methods across various zero-shot tasks and fine-tuning task on different datasets.
The task of multimodal referring expression comprehension (REC), aiming at localizing an image region described by a natural language expression, has recently received increasing attention within the research comminity. In this paper, we specifically focus on referring expression comprehension with commonsense knowledge (KB-Ref), a task which typically requires reasoning beyond spatial, visual or semantic information. We propose a novel framework for Commonsense Knowledge Enhanced Transformers (CK-Transformer) which effectively integrates commonsense knowledge into the representations of objects in an image, facilitating identification of the target objects referred to by the expressions. We conduct extensive experiments on several benchmarks for the task of KB-Ref. Our results show that the proposed CK-Transformer achieves a new state of the art, with an absolute improvement of 3.14% accuracy over the existing state of the art.
A critical challenge faced by supervised word sense disambiguation (WSD) is the lack of large annotated datasets with sufficient coverage of words in their diversity of senses. This inspired recent research on few-shot WSD using meta-learning. While such work has successfully applied meta-learning to learn new word senses from very few examples, its performance still lags behind its fully-supervised counterpart. Aiming to further close this gap, we propose a model of semantic memory for WSD in a meta-learning setting. Semantic memory encapsulates prior experiences seen throughout the lifetime of the model, which aids better generalization in limited data settings. Our model is based on hierarchical variational inference and incorporates an adaptive memory update rule via a hypernetwork. We show our model advances the state of the art in few-shot WSD, supports effective learning in extremely data scarce (e.g. one-shot) scenarios and produces meaning prototypes that capture similar senses of distinct words.