Xingjian Diao
2024
AlphaLoRA: Assigning LoRA Experts Based on Layer Training Quality
Peijun Qing
|
Chongyang Gao
|
Yefan Zhou
|
Xingjian Diao
|
Yaoqing Yang
|
Soroush Vosoughi
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Parameter-efficient fine-tuning methods, such as Low-Rank Adaptation (LoRA), are known to enhance training efficiency in Large Language Models (LLMs). Due to the limited parameters of LoRA, recent studies seek to combine LoRA with Mixture-of-Experts (MoE) to boost performance across various tasks. However, inspired by the observed redundancy in traditional MoE structures, prior studies find that LoRA experts within the MoE architecture also exhibit redundancy, suggesting a need to vary the allocation of LoRA experts across different layers. In this paper, we leverage Heavy-Tailed Self-Regularization (HT-SR) Theory to design a fine-grained allocation strategy. Our analysis reveals that the number of experts per layer correlates with layer training quality, which exhibits significant variability across layers. Based on this, we introduce AlphaLoRA, a theoretically principled and training-free method for allocating LoRA experts to reduce redundancy further. Experiments on three models across ten language processing and reasoning benchmarks demonstrate that AlphaLoRA achieves comparable or superior performance over all baselines. Our code is available at https://github.com/morelife2017/alphalora.
Learning Musical Representations for Music Performance Question Answering
Xingjian Diao
|
Chunhui Zhang
|
Tingxuan Wu
|
Ming Cheng
|
Zhongyu Ouyang
|
Weiyi Wu
|
Jiang Gui
Findings of the Association for Computational Linguistics: EMNLP 2024
Music performances are representative scenarios for audio-visual modeling. Unlike common scenarios with sparse audio, music performances continuously involve dense audio signals throughout. While existing multimodal learning methods on the audio-video QA demonstrate impressive capabilities on general scenarios, they are incapable of dealing with fundamental problems within the music performances: they underexplore the interaction between the multimodal signals in performance, and fail to consider the distinctive characteristics of instruments and music. Therefore, existing methods tend to inaccurately answer questions regarding musical performances. To bridge the above research gaps, first, given the intricate multimodal interconnectivity inherent to music data, our primary backbone is designed to incorporate multimodal interactions within the context of music; second, to enable the model to learn music characteristics, we annotate and release rhythmic and music sources in the current music datasets; third, for time-aware audio-visual modelling, we align the model’s music predictions with the temporal dimension. Our experiments show state-of-the-art effects on the Music AVQA datasets. Our code is available at: https://github.com/xid32/Amuse.
Search
Fix data
Co-authors
- Ming Cheng 1
- Chongyang Gao 1
- Jiang Gui 1
- Zhongyu Ouyang 1
- Peijun Qing 1
- show all...