API call generation is the cornerstone of large language models’ tool-using ability that provides access to the larger world. However, existing supervised and in-context learning approaches suffer from high training costs, poor data efficiency, and generated API calls that can be unfaithful to the API documentation and the user’s request. To address these limitations, we propose an output-side optimization approach called FANTASE. Two of the unique contributions of FANTASE are its State-Tracked Constrained Decoding (SCD) and Reranking components. SCD dynamically incorporates appropriate API constraints in the form of Token Search Trie for efficient and guaranteed generation faithfulness with respect to the API documentation. The Reranking component efficiently brings in the supervised signal by leveraging a lightweight model as the discriminator to rerank the beam-searched candidate generations of the large language model. We demonstrate the superior performance of FANTASE in API call generation accuracy, inference efficiency, and context efficiency with DSTC8 and API Bank datasets.
While most task-oriented dialogues assume conversations between the agent and one user at a time, dialogue systems are increasingly expected to communicate with multiple users simultaneously who make decisions collaboratively. To facilitate development of such systems, we release the Multi-User MultiWOZ dataset: task-oriented dialogues among two users and one agent. To collect this dataset, each user utterance from MultiWOZ 2.2 was replaced with a small chat between two users that is semantically and pragmatically consistent with the original user utterance, thus resulting in the same dialogue state and system response. These dialogues reflect interesting dynamics of collaborative decision-making in task-oriented scenarios, e.g., social chatter and deliberation. Supported by this data, we propose the novel task of multi-user contextual query rewriting: to rewrite a task-oriented chat between two users as a concise task-oriented query that retains only task-relevant information and that is directly consumable by the dialogue system. We demonstrate that in multi-user dialogues, using predicted rewrites substantially improves dialogue state tracking without modifying existing dialogue systems that are trained for single-user dialogues. Further, this method surpasses training a medium-sized model directly on multi-user dialogues and generalizes to unseen domains.
Using a narrative style is an effective way to communicate health information both on and off social media. Given the amount of misinformation being spread online and its potential negative effects, it is crucial to investigate the interplay between narrative communication style and misinformative health content on user engagement on social media platforms. To explore this in the context of Twitter, we start with previously annotated health misinformation tweets (n ≈15,000) and annotate a subset of the data (n=3,000) for the presence of narrative style. We then use these manually assigned labels to train text classifiers, experimenting with supervised fine-tuning and in-context learning for automatic narrative detection. We use our best model to label remaining portion of the dataset, then statistically analyze the relationship between narrative style, misinformation, and user-level features on engagement, finding that narrative use is connected to increased tweet engagement and can, in some cases, lead to increased engagement with misinformation. Finally, we analyze the general categories of language used in narratives and health misinformation in our dataset.
With the advances in deep learning, tremendous progress has been made with chit-chat dialogue systems and task-oriented dialogue systems. However, these two systems are often tackled separately in current methods. To achieve more natural interaction with humans, dialogue systems need to be capable of both chatting and accomplishing tasks. To this end, we propose a unified dialogue system (UniDS) with the two aforementioned skills. In particular, we design a unified dialogue data schema, compatible for both chit-chat and task-oriented dialogues. Besides, we propose a two-stage training method to train UniDS based on the unified dialogue data schema. UniDS does not need to adding extra parameters to existing chit-chat dialogue systems. Experimental results demonstrate that the proposed UniDS works comparably well as the state-of-the-art chit-chat dialogue systems and task-oriented dialogue systems. More importantly, UniDS achieves better robustness than pure dialogue systems and satisfactory switch ability between two types of dialogues.
Narratives have been shown to be an effective way to communicate health risks and promote health behavior change, and given the growing amount of health information being shared on social media, it is crucial to study health-related narratives in social media. However, expert identification of a large number of narrative texts is a time consuming process, and larger scale studies on the use of narratives may be enabled through automatic text classification approaches. Prior work has demonstrated that automatic narrative detection is possible, but modern deep learning approaches have not been used for this task in the domain of online health communities. Therefore, in this paper, we explore the use of deep learning methods to automatically classify the presence of narratives in social media posts, finding that they outperform previously proposed approaches. We also find that in many cases, these models generalize well across posts from different health organizations. Finally, in order to better understand the increase in performance achieved by deep learning models, we use feature analysis techniques to explore the features that most contribute to narrative detection for posts in online health communities.
Instead of using expensive manual annotations, researchers have proposed to train named entity recognition (NER) systems using heuristic labeling rules. However, devising labeling rules is challenging because it often requires a considerable amount of manual effort and domain expertise. To alleviate this problem, we propose GLARA, a graph-based labeling rule augmentation framework, to learn new labeling rules from unlabeled data. We first create a graph with nodes representing candidate rules extracted from unlabeled data. Then, we design a new graph neural network to augment labeling rules by exploring the semantic relations between rules. We finally apply the augmented rules on unlabeled data to generate weak labels and train a NER model using the weakly labeled data. We evaluate our method on three NER datasets and find that we can achieve an average improvement of +20% F1 score over the best baseline when given a small set of seed rules.
The team from the University of Michigan participated in three tasks in the Social Media Mining for Health Applications (#SMM4H) 2020 shared tasks – on detecting mentions of adverse effects (Task 2), extracting and normalizing them (Task 3), and detecting mentions of medication abuse (Task 4). Our approaches relied on a combination of traditional machine learning and deep learning models. On Tasks 2 and 4, our submitted runs performed at or above the task average.
The language used by physicians and health professionals in prescription directions includes medical jargon and implicit directives and causes much confusion among patients. Human intervention to simplify the language at the pharmacies may introduce additional errors that can lead to potentially severe health outcomes. We propose a novel machine translation-based approach, PharmMT, to automatically and reliably simplify prescription directions into patient-friendly language, thereby significantly reducing pharmacist workload. We evaluate the proposed approach over a dataset consisting of over 530K prescriptions obtained from a large mail-order pharmacy. The end-to-end system achieves a BLEU score of 60.27 against the reference directions generated by pharmacists, a 39.6% relative improvement over the rule-based normalization. Pharmacists judged 94.3% of the simplified directions as usable as-is or with minimal changes. This work demonstrates the feasibility of a machine translation-based tool for simplifying prescription directions in real-life.
Identifying mentions of medical concepts in social media is challenging because of high variability in free text. In this paper, we propose a novel neural network architecture, the Collocated LSTM with Attentive Pooling and Aggregated representation (CLAPA), that integrates a bidirectional LSTM model with attention and pooling strategy and utilizes the collocation information from training data to improve the representation of medical concepts. The collocation and aggregation layers improve the model performance on the task of identifying mentions of adverse drug events (ADE) in tweets. Using the dataset made available as part of the workshop shared task, we show that careful selection of neighborhood contexts can help uncover useful local information and improve the overall medical concept representation.